CSE 421, Introduction to Algorithms

Lecture 15, Winter 2024
Dynamic Programming
Longest Common Subsequence
Announcements

• Dynamic Programming Reading:
 – Weighted Interval Scheduling, Segmented Least Squares, Knapsack and Subset Sum
 – 6.6 String Alignment
 – 6.8 Shortest Paths (Bellman-Ford)

• Midterm, Friday, Feb 9
 – Material through 6.3 and HW 5
 – Feb 8 Section will be Midterm review
 • Old exam problems on course homepage
 – Homework 6 due Feb 14
Longest Common Subsequence

- $C = c_1 \ldots c_g$ is a subsequence of $A = a_1 \ldots a_m$ if C can be obtained by removing elements from A (but retaining order).
- $\text{LCS}(A, B)$: A maximum length sequence that is a subsequence of both A and B.

\[
\text{LCS}('\text{BARTHOLEMEWSIMPSON}', '\text{KRUSTYTHECLOWN}') = '\text{RTHOWN}'
\]
Optimization recurrence

If \(a_j = b_k \), \(\text{Opt}[j,k] = 1 + \text{Opt}[j-1, k-1] \)

If \(a_j \neq b_k \), \(\text{Opt}[j,k] = \max(\text{Opt}[j-1,k], \text{Opt}[j,k-1]) \)
Dynamic Programming
Computation
Code to compute Opt[n, m]

for (int i = 0; i < n; i++)
 for (int j = 0; j < m; j++)
 Opt[i, j] = Opt[i-1, j-1] + 1;
 else if (Opt[i-1, j] >= Opt[i, j-1])
 Opt[i, j] := Opt[i-1, j];
 else
 Opt[i, j] := Opt[i, j-1];
Storing the path information

A[1..m], B[1..n]
for i := 1 to m \hspace{1cm} \text{Opt}[i, 0] := 0;
for j := 1 to n \hspace{1cm} \text{Opt}[0,j] := 0;
\text{Opt}[0,0] := 0;
for i := 1 to m
 for j := 1 to n
 \text{Best}[i,j] := \text{Diag};
 if A[i] = B[j] \hspace{1cm} \text{Opt}[i,j] := 1 + \text{Opt}[i-1,j-1];
 else if \text{Opt}[i-1, j] \geq \text{Opt}[i, j-1]
 \text{Opt}[i, j] := \text{Opt}[i-1, j], \text{Best}[i,j] := \text{Left};
 else
 \text{Opt}[i, j] := \text{Opt}[i, j-1], \text{Best}[i,j] := \text{Down};
Reconstructing Path from Distances
How good is this algorithm?

• Is it feasible to compute the LCS of two strings of length 300,000 on a standard desktop PC? Why or why not.
public int ComputeLCS() {
 int n = str1.Length;
 int m = str2.Length;

 int[,] opt = new int[n + 1, m + 1];
 for (int i = 0; i <= n; i++)
 opt[i, 0] = 0;
 for (int j = 0; j <= m; j++)
 opt[0, j] = 0;

 for (int i = 1; i <= n; i++)
 for (int j = 1; j <= m; j++)
 if (str1[i - 1] == str2[j - 1])
 opt[i, j] = opt[i - 1, j - 1] + 1;
 else if (opt[i - 1, j] >= opt[i, j - 1])
 opt[i, j] = opt[i - 1, j];
 else
 opt[i, j] = opt[i, j - 1];

 return opt[n, m];
}
N = 17000

Runtime should be about 5 seconds*

* Personal PC, 10 years old
public int SpaceEfficientLCS() {
 int n = str1.Length;
 int m = str2.Length;
 int[] prevRow = new int[m + 1];
 int[] currRow = new int[m + 1];

 for (int j = 0; j <= m; j++)
 prevRow[j] = 0;

 for (int i = 1; i <= n; i++) {
 currRow[0] = 0;
 for (int j = 1; j <= m; j++) {
 if (str1[i - 1] == str2[j - 1])
 currRow[j] = prevRow[j - 1] + 1;
 else if (prevRow[j] >= currRow[j - 1])
 currRow[j] = prevRow[j];
 else
 currRow[j] = currRow[j - 1];
 }
 for (int j = 1; j <= m; j++)
 prevRow[j] = currRow[j];
 }

 return currRow[m];
}
N = 300000

N: 10000 Base 2 Length: 8096 Gamma: 0.8096 Runtime:00:00:01.86
N: 20000 Base 2 Length: 16231 Gamma: 0.81155 Runtime:00:00:07.45
N: 30000 Base 2 Length: 24317 Gamma: 0.8105667 Runtime:00:00:16.82
N: 40000 Base 2 Length: 32510 Gamma: 0.81275 Runtime:00:00:29.84
N: 50000 Base 2 Length: 40563 Gamma: 0.81126 Runtime:00:00:46.78
N: 60000 Base 2 Length: 48700 Gamma: 0.8116667 Runtime:00:01:08.06
N: 70000 Base 2 Length: 56824 Gamma: 0.8117715 Runtime:00:01:33.36

N: 300000 Base 2 Length: 243605 Gamma: 0.8120167 Runtime:00:28:07.32

Chvatal-Sankoff Constant: γ_k
Observations about the Algorithm

• The computation can be done in $O(m+n)$ space if we only need one column of the Opt values or Best Values

• The algorithm can be run from either end of the strings
Computing LCS in $O(nm)$ time and $O(n+m)$ space

- Divide and conquer algorithm
- Recomputing values used to save space
Divide and Conquer Algorithm

• Where does the best path cross the middle column?

• For a fixed i, and for each j, compute the LCS that has a_i matched with b_j
Constrained LCS

• \(\text{LCS}_{i,j}(A,B) \): The LCS such that
 - \(a_1, \ldots, a_i \) paired with elements of \(b_1, \ldots, b_j \)
 - \(a_{i+1}, \ldots, a_m \) paired with elements of \(b_{j+1}, \ldots, b_n \)

• \(\text{LCS}_{4,3}(abbacbb, cbbaa) \)
A = RRSSR T T R TS
B = RTSRRSTST

Compute \(\text{LCS}_{5,0}(A,B) \), \(\text{LCS}_{5,1}(A,B) \), …, \(\text{LCS}_{5,9}(A,B) \)
A = RRSSRTTTRS
B = RTSRRSTST

Compute $\text{LCS}_{5,0}(A,B)$, $\text{LCS}_{5,1}(A,B)$, ..., $\text{LCS}_{5,9}(A,B)$

<table>
<thead>
<tr>
<th>j</th>
<th>left</th>
<th>right</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>
Computing the middle column

- From the left, compute LCS($a_1 \ldots a_{m/2}, b_1 \ldots b_j$)
- From the right, compute LCS($a_{m/2+1} \ldots a_m, b_{j+1} \ldots b_n$)
- Add values for corresponding j’s

- Note – this is space efficient
Divide and Conquer

- A = a_1, \ldots, a_m \hspace{1cm} B = b_1, \ldots, b_n
- Find j such that
 - LCS($a_1 \ldots a_{m/2}, b_1 \ldots b_j$) and
 - LCS($a_{m/2+1} \ldots a_m, b_{j+1} \ldots b_n$) yield optimal solution
- Recurse
Algorithm Analysis

- \(T(m,n) = T(m/2, j) + T(m/2, n-j) + cnm \)
Prove by induction that
\[T(m,n) \leq 2^c m n \]

\[T(m,n) = T(m/2, j) + T(m/2, n-j) + cnm \]
Memory Efficient LCS Summary

• We can afford $O(nm)$ time, but we can’t afford $O(nm)$ space
• If we only want to compute the length of the LCS, we can easily reduce space to $O(n+m)$
• Avoid storing the value by recomputing values
 – Divide and conquer used to reduce problem sizes
String Alignment Problem

- Align sequences with gaps

\[
\begin{array}{c}
\text{CAT TGA} \\
\text{CAGAT AGGA}
\end{array}
\]

- Charge \(\delta_x \) if character \(x \) is unmatched
- Charge \(\gamma_{xy} \) if character \(x \) is matched to character \(y \)

Note: the problem is often expressed as a minimization problem, with \(\gamma_{xx} = 0 \) and \(\delta_x > 0 \)
Give the Optimization Recurrence for the String Alignment Problem

- Charge δ_x if character x is unmatched
- Charge γ_{xy} if character x is matched to character y

$$\text{Opt}[j, k] =$$

Let $a_j = x$ and $b_k = y$

Express as minimization
String edit with Typo Distance

- Find closest dictionary word to typed word
- $\text{Dist}(\text{‘a’}, \text{‘s’}) = 1$
- $\text{Dist}(\text{‘a’}, \text{‘u’}) = 6$
- Capture the likelihood of mistyping characters