CSE 421
 Introduction to Algorithms

Lecture 13, Winter 2024
Dynamic Programming

Announcements

- Dynamic Programming Reading:
-6.1-6.2, Weighted Interval Scheduling
- 6.3 Segmented Least Squares
- 6.4 Knapsack and Subset Sum
- 6.6 String Alignment
- 6.8 Shortest Paths (Bellman-Ford)
- 6.9 Negative cost cycles
- Midterm, Friday, Feb 9
- Material through 6.3 and HW 5
- Feb 8 Section will be Midterm review

Dynamic Programming

- Key ideas
- Express solution in terms of a polynomial number of sub problems
- Order sub problems to avoid recomputation

Optimal linear interpolation

Optimal interpolation with k segments

- Optimal segmentation with three segments
$-\operatorname{Min}_{\mathrm{i}, \mathrm{j}}\left\{\mathrm{E}_{1, \mathrm{i}}+\mathrm{E}_{\mathrm{i}, \mathrm{j}}+\mathrm{E}_{\mathrm{j}, \mathrm{n}}\right\}$
$-O\left(n^{2}\right)$ combinations considered
- Generalization to k segments leads to considering $\mathrm{O}\left(\mathrm{n}^{k-1}\right)$ combinations

Opt $t_{k}[j]$: Minimum error approximating $p_{1} \ldots p_{j}$ with k segments

How do you express Opt ${ }_{k}[j]$ in terms of

 Opt $_{k-1}[1], \ldots$, Opt $_{k-1}[\mathrm{j}]$?$$
\text { Opt }_{k}[j]=\min _{i}\left\{\text { Opt }_{k-1}[i]+E_{i, j}\right\} \text { for } 0<i<j
$$

Optimal solution with k segments extends an optimal solution of $\mathrm{k}-1$ segments on a smaller problem

Optimal multi-segment interpolation

Compute Opt[k, j] for $0<\mathrm{k}<\mathrm{j}<\mathrm{n}$

$$
\begin{aligned}
& \text { for } j:=1 \text { to } n \\
& \text { Opt } 1, j]=E_{1, j} ; \\
& \text { for } k:=2 \text { to } n-1 \\
& \text { for } j:=2 \text { to } n \\
& t:=E_{1, j} \\
& \text { for } i:=1 \text { to } j-1 \\
& t=\min \left(t, \text { Opt }[k-1, i]+E_{i, j}\right) \\
& \text { Opt }[k, j]=t
\end{aligned}
$$

Shortest Paths in Linear Graphs

- A directed graph with edge weights on the vertex set $\mathrm{V}=\{1,2, \ldots \mathrm{~N}\}$ is linear is all edges (i, j) \in E satisfy $\mathrm{i}<\mathrm{j}$

Dynamic Programming for

Shortest Paths in Linear Graphs

- D[j] = dist(1, j)
-What is the optimization equation?

How many different ways can I walk to work?

Only taking "efficient" routes
Make the problem discrete
Directed Graph model: Intersections and streets

Assume the graph is a directed acyclic graph (DAG)

Problem: compute the number of paths from vertex h to vertex w

$P[v]:$ Number of paths from v to v_{0}

How do you compute $P[v]$ if you know $P[x]$, $P[y]$, and $P[z]$?

Recursive Algorithm

```
PC(v){
    if (v == vo)
        return 1;
    count = 0;
    foreach (w in N+
        count = count + PC(w);
}
return count;
}
```


Ordering the vertices

How do you order the vertices of a DAG such that if there is an edge from v to w, w comes before v in the ordering?

Path Counting

$\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is an n node directed acyclic graph, with $\mathrm{v}_{\mathrm{n}-1}, \mathrm{v}_{\mathrm{n}-2}, \ldots$, $\mathrm{v}_{1}, \mathrm{v}_{0}$ a topological order of the vertices. An array is computed giving the number of paths from each vertex to v_{0}.

CountPaths(G, P)\{
$\mathrm{P}[0]=1$;
for ($\mathrm{i}=1$ to $\mathrm{n}-1$) $\{$
$\mathrm{P}[\mathrm{i}]=0$;
foreach (w in $\mathrm{N}^{+}\left(\mathrm{v}_{\mathrm{i}}\right)$)
$P[i]=P[i]+P[w] ;$
\}
\}

Typesetting

- Layout text on a page to optimize readability and aesthetic measures
- Skilled profession replaced by computing
- Goal - give text a uniform appearance which is primarily done by choosing line breaks to balance white space
- Interword spacing can stretch or shrink
- Hyphenation is sometimes available

Optimal line breaking The LaTeX algorithm

Element distinctness has been a particular focus of lower bound analysis. The first time-space tradeoff lower bounds for the problem apply to structured algorithms. Borodin et al. [13] gave a time-space tradeoff lower bound for computing $E D$ on comparison branching programs of $T \in \Omega\left(n^{3 / 2} / S^{1 / 2}\right)$ and, since $S \geq \log _{2} n, T \in$ $\Omega\left(n^{3 / 2} \sqrt{\log n} / S\right)$. Yao [32] improved this to a near-optimal $T \in \Omega\left(n^{2-\epsilon(n)} / S\right)$, where $\epsilon(n)=5 /(\ln n)^{1 / 2}$. Since these lower bounds apply to the average case for randomly ordered inputs, by Yao's lemma, they also apply to randomized comparison branching programs. These bounds also trivially apply to all frequency moments since, for $k \neq 1$, $E D(x)=n$ iff $F_{k}(x)=n$. This near-quadratic lower bound seemed to suggest that the complexity of $E D$ and F_{k} should closely track that of sorting.

Optimal Line Breaking

- Words have length w_{i}, line length L
- Penalty related to white space or overflow of the line
- Quadratic measure often used
- Pen(i, j): Penalty for putting $w_{i}, w_{i+1}, \ldots, w_{j}$ on the same line
- Opt[m]: minimum penalty for ending a line with w_{m}

The quick brown
fox jumped over
the lazy dog.

The quick brown fox jumped over the lazy dog.

Pen("The quick brown") $=1$
Pen("fox jumped over") $=2$
Pen("fox jumped") $=8$
Pen("the lazy dog") $=6$
Pen("over the lazy dog.") $=4$
Pen(i, j): Penalty for putting $w_{i}, w_{i+1}, \ldots, w_{j}$ on the same line

Optimal Line Breaking

Optimal score for ending a line with w_{m}

Opt[m] $=\min _{i}\{\operatorname{Opt}[\mathrm{i}]+\operatorname{Pen}(\mathrm{i}+1, \mathrm{~m})\}$ for $0<\mathrm{i}<\mathrm{m}$

For words $w_{1}, w_{2}, \ldots, w_{n}$, we compute Opt[n] to find the optimal layout

Optimal Line Breaking

Opt $[0]=0 ;$
for $m=1$ to $n\{$
Find i that minimizes Opt [i] + Pen($i+1, m$);
Opt[m] = Opt [i$]+\operatorname{Pen}(\mathrm{i}+1, \mathrm{~m})$;
$\operatorname{Pred}[\mathrm{m}]=\mathrm{i}$;
\}

