

Quicksort - worst case

- Pivot selection: choose first element
- Sort [1,2,3,4,5,6,...N]

Quicksort - pragmatics

- Pivot selection rules
 - Median of first, middle, and last
 - Choose random element
- In place implementation
- · Algorithm engineering for partitioning
- Recursion cutoff for small problems

Average case analysis for Quicksort

- All inputs equally likely
 Or random elements used for pivot
 - Or input is randomly shuffled
- QS(n) = average number of comparisons for Quicksort on input of size n.

Building a recurrence

Pivot chosen at random. The chance of having i elements less than the pivot is 1/n.

$$T(n) = (n-1) + \frac{1}{n} \sum_{i=0}^{n-1} (T(i) + T(n-i-1)).$$
$$T(n) = (n-1) + \frac{2}{n} \sum_{i=1}^{n-1} T(i)$$

11

Solution: $T(N) \approx 2 n \ln n$

• Given n numbers, find the number of rank n/2

- One approach is sorting
 - Sort the elements, and choose the middle one
 - Can you do better?

12

10

	Select(A, k)				
Selec	$ t(A, k) \{ \\ Choose element x from. \\ S_1 = \{y \text{ in } A \mid y < x\} \\ S_2 = \{y \text{ in } A \mid y > x\} \\ S_3 = \{y \text{ in } A \mid y > x\} \\ \text{if } (S_2 >= k) \\ return Select(S \\ else if (S_2 + S_3 >= k) \\ return x \\ else \\ return Select(S \\ $	A ; ₂ , k) ; ₁ , k - S ₂	- S ₃)		
	S ₁	S ₃	S ₂]	
				14	

Randomized Selection · Choose the element at random · Analysis can show that the algorithm has expected run time O(n)

Deterministic Selection · What is the run time of select if we can guarantee that choose finds an x such that $|S_1| < 3n/4$ and $|S_2| < 3n/4$ in O(n) time 16

BFPRT Algorithm · A very clever choose algorithm . . . Split into n/5 sets of size 5 M be the set of medians of these sets Let x be the median of M

15

BFPRT runtime $|S_1| < 3n/4, |S_2| < 3n/4$ Split into n/5 sets of size 5

M be the set of medians of these sets x be the median of M Construct S_1 and S_2 Recursive call in S_1 or S_2

18

BFPRT Recurrence $T(n) \le T(3n/4) + T(n/5) + c n$

A theoretical aside

- How many comparisons are needed in the worst case to find the median?
- BFPRT showed that this is at most 18 n
- Best known results in 3 n (but its complicated)
- The lower bound was shown to be at least 2 n by Bent and John

20

- Improved to 2.01 n by Zwick