
1

CSE 421

Introduction to Algorithms

Richard Anderson

Lecture 11,  Winter 2024

Divide and Conquer
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Announcements

• Divide and Conquer and 
Recurrences
– Recurrence Techniques

– Fast Matrix Multiplication

– Counting Inversions (5.3)

– Closest Pair (5.4)

– Integer Multiplication (5.5)

– Quicksort and Median Finding

• Dynamic Programming

• Midterm,  Friday,  February 9
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Integer Arithmetic

9715480283945084383094856701043643845790217965702956767

+   1242431098234099057329075097179898430928779579277597977

2095067093034680994318596846868779409766717133476767930

X   5920175091777634709677679342929097012308956679993010921

Runtime for standard algorithm to add two n digit numbers:

Runtime for standard algorithm to multiply two n digit numbers:
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Recursive Multiplication Algorithm 

(First attempt)

x = x1 2
n/2 + x0

y = y1 2
n/2 + y0

xy = (x1 2
n/2 + x0) (y1 2

n/2 + y0)

= x1y1 2n + (x1y0 + x0y1)2
n/2 + x0y0

Recurrence:

Run time:
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Simple algebra

x = x1 2
n/2 + x0

y = y1 2
n/2 + y0

xy =  x1y1 2n + (x1y0 + x0y1) 2
n/2 + x0y0

p = (x1 + x0)(y1 + y0) = x1y1 + x1y0 + x0y1 + x0y0
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Karatsuba’s Algorithm

Multiply n-digit integers x and y

Let   x = x1 2n/2 + x0 and  y = y1 2n/2 + y0

Recursively compute

a = x1y1

b = x0y0

p = (x1 + x0)(y1 + y0)  

Return a2n + (p – a – b)2n/2 + b

Recurrence:  T(n) = 3T(n/2) + cn

log2 3 = 1.58496250073…
6
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Quicksort  [Tony Hoare, 1959]

QuickSort(S):
1. Pick an element v in S.  This is the pivot value.

2. Partition S-{v} into two disjoint subsets, S1 and S2
such that:

• elements in S1 are all < v

• elements in S2 are all > v

3. Return concatenation of QuickSort(S1), v, 
QuickSort(S2)

Recursion ends if Quicksort( ) receives an array of length 0 
or 1.
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Quicksort – worst case

• Pivot selection:  choose first element

• Sort [1,2,3,4,5,6,. . . N]
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Quicksort - pragmatics

• Pivot selection rules

– Median of first, middle, and last

– Choose random element

• In place implementation

• Algorithm engineering for partitioning

• Recursion cutoff for small problems
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Average case analysis for 

Quicksort
• All inputs equally likely

– Or random elements used for pivot

– Or input is randomly shuffled

• QS(n) = average number of comparisons 

for Quicksort on input of size n. 

10

Building a recurrence
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Pivot chosen at random.  The chance of 

having i elements less than the pivot is 1/n.

Solution:  T(N) ≈ 2 n ln n

Computing the Median

• Given n numbers, find the number of rank 

n/2

• One approach is sorting

– Sort the elements, and choose the middle one

– Can you do better?

12
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Problem generalization

• Selection, given n numbers and an integer 

k, find the k-th largest
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Select(A, k)

Select(A, k){

Choose element x from A

S1 = {y in A | y < x}

S2 = {y in A | y > x}

S3 = {y in A | y = x}

if (|S2| >= k)

return Select(S2, k)

else if (|S2| + |S3| >= k)

return x

else

return Select(S1, k - |S2| - |S3|)

}

S1 S3 S2
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Randomized Selection

• Choose the element at random

• Analysis can show that the algorithm has 

expected run time O(n)
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Deterministic Selection

• What is the run time of select if we can 

guarantee that choose finds an x such that 

|S1| < 3n/4 and |S2| < 3n/4 in O(n) time
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BFPRT Algorithm

• A very clever choose algorithm . . . 

Split into n/5 sets of size 5

M be the set of medians of these sets

Let x be the median of M

1978

19951986

2002
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BFPRT runtime

|S1| < 3n/4, |S2| < 3n/4

Split into n/5 sets of size 5

M be the set of medians of these sets

x be the median of M

Construct S1 and S2

Recursive call in S1 or S2
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http://en.wikipedia.org/wiki/File:VaughanPratt.JPG
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BFPRT Recurrence

19Prove that T(n) ≤ 20 c n

T(n) ≤ T(3n/4) + T(n/5) + c n

A theoretical aside

• How many comparisons are needed in the 

worst case to find the median?

• BFPRT showed that this is at most 18 n

• Best known results in 3 n (but its 

complicated)

• The lower bound was shown to be at least 

2 n by Bent and John

– Improved to 2.01 n by Zwick
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