CSE 421
 Introduction to Algorithms

Richard Anderson
Lecture 11, Winter 2024 Divide and Conquer

Announcements

- Divide and Conquer and Recurrences
- Recurrence Techniques
- Fast Matrix Multiplication
- Counting Inversions (5.3)
- Closest Pair (5.4)
- Integer Multiplication (5.5)
- Quicksort and Median Finding
- Dynamic Programming
- Midterm, Friday, February 9

$$
\begin{gathered}
k^{\log _{k} n}=n \\
\log _{k} n=\frac{\log _{2} n}{\log _{2} k} \\
k^{\log _{2} n}=n^{\log _{2} k} \\
\sum_{i=0}^{n} x^{i}=\frac{1-x^{n+1}}{1-x}
\end{gathered}
$$

Inteoer Arithne etic

9715480283945084383094856701043643845790217965702956767 + 1242431098234099057329075097179898430928779579277597977

Runtime for standard algorithm to add two n digit numbers:

Recursive Multiplication Algorithm (First attempt)

$$
\begin{aligned}
x & =x_{1} 2^{n / 2}+x_{0} \\
y & =y_{1} 2^{n / 2}+y_{0} \\
x y & =\left(x_{1} 2^{n / 2}+x_{0}\right)\left(y_{1} 2^{n / 2}+y_{0}\right) \\
& =x_{1} y_{1} 2^{n}+\left(x_{1} y_{0}+x_{0} y_{1}\right) 2^{n / 2}+x_{0} y_{0}
\end{aligned}
$$

Recurrence:
Run time:

Simple algebra

$$
\begin{aligned}
& x=x_{1} 2^{n / 2}+x_{0} \\
& y=y_{1} 2^{n / 2}+y_{0} \\
& x y=x_{1} y_{1} 2^{n}+\left(x_{1} y_{0}+x_{0} y_{1}\right) 2^{n / 2}+x_{0} y_{0} \\
& p=\left(x_{1}+x_{0}\right)\left(y_{1}+y_{0}\right)=x_{1} y_{1}+x_{1} y_{0}+x_{0} y_{1}+x_{0} y_{0}
\end{aligned}
$$

Karatsuba's Algorithm

Multiply n-digit integers x and y

$$
\text { Let } x=x_{1} 2^{n / 2}+x_{0} \text { and } y=y_{1} 2^{n / 2}+y_{0}
$$ Recursively compute

$$
\begin{aligned}
& a=x_{1} y_{1} \\
& b=x_{0} y_{0} \\
& p=\left(x_{1}+x_{0}\right)\left(y_{1}+y_{0}\right) \\
& \text { Return } a 2^{n}+(p-a-b) 2^{n / 2}+b
\end{aligned}
$$

Recurrence: $T(n)=3 T(n / 2)+c n$

Quicksort [Tony Hoare, 1959]

QuickSort(S):

1. Pick an element v in \mathbf{S}. This is the pivot value.
2. Partition \mathbf{S} - $\{v\}$ into two disjoint subsets, \mathbf{S}_{1} and \mathbf{S}_{2} such that:

- elements in \mathbf{S}_{1} are all $<v$
- elements in \mathbf{S}_{2} are all $>v$

3. Return concatenation of QuickSort $\left(\mathbf{S}_{1}\right), v$, QuickSort(\mathbf{S}_{2})

Recursion ends if Quicksort() receives an array of length 0 or 1 .

Quicksort - worst case

- Pivot selection: choose first element
- Sort [1,2,3,4,5,6,. . . N]

Quicksort - pragmatics

- Pivot selection rules
- Median of first, middle, and last
- Choose random element
- In place implementation
- Algorithm engineering for partitioning
- Recursion cutoff for small problems

Average case analysis for Quicksort

- All inputs equally likely
- Or random elements used for pivot
- Or input is randomly shuffled
- QS(n) = average number of comparisons for Quicksort on input of size n.

Building a recurrence

Pivot chosen at random. The chance of having i elements less than the pivot is $1 / n$.

$$
T(n)=(n-1)+\frac{1}{n} \sum_{i=0}^{n-1}(T(i)+T(n-i-1)) .
$$

$$
T(n)=(n-1)+\frac{2}{n} \sum_{i=1}^{n-1} T(i)
$$

Solution: $T(N) \approx 2 n \ln n$

Computing the Median

- Given n numbers, find the number of rank n/2
- One approach is sorting
- Sort the elements, and choose the middle one
- Can you do better?

Problem generalization

- Selection, given n numbers and an integer k , find the k -th largest

Select(A, k)

Select(A, k)
Choose element x from A
$S_{1}=\{y$ in $A \mid y<x\}$
$S_{2}=\{y$ in $A \mid y>x\}$
$\mathrm{S}_{3}=\{y$ in $A \mid y=x\}$
if ($\left|S_{2}\right|>=k$)
return Select($\left.\mathrm{S}_{2}, \mathrm{k}\right)$
else if $\left(\left|S_{2}\right|+\left|S_{3}\right|>=k\right)$ return x
else

$$
\text { return Select }\left(\mathrm{S}_{1}, \mathrm{k}-\left|\mathrm{S}_{2}\right|-\left|\mathrm{S}_{3}\right|\right)
$$

Randomized Selection

- Choose the element at random
- Analysis can show that the algorithm has expected run time $O(n)$

Deterministic Selection

- What is the run time of select if we can guarantee that choose finds an x such that $\left|S_{1}\right|<3 n / 4$ and $\left|S_{2}\right|<3 n / 4$ in $O(n)$ time

BFPRT Algorithm

- A very clever choose algorithm . . .

Split into $\mathrm{n} / 5$ sets of size 5
M be the set of medians of these sets Let x be the median of M

BFPRT runtime

$\left|S_{1}\right|<3 n / 4,\left|S_{2}\right|<3 n / 4$

Split into $\mathrm{n} / 5$ sets of size 5 M be the set of medians of these sets
x be the median of M
Construct S_{1} and S_{2}
Recursive call in S_{1} or S_{2}

BFPRT Recurrence

$T(n) \leq T(3 n / 4)+T(n / 5)+c n$

A theoretical aside

- How many comparisons are needed in the worst case to find the median?
- BFPRT showed that this is at most 18 n
- Best known results in 3 n (but its complicated)
- The lower bound was shown to be at least 2 n by Bent and John
- Improved to 2.01 n by Zwick

