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CSE 421

Introduction to Algorithms

Richard Anderson

Lecture 9,  Winter 2024

Recurrences
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Announcements

• Divide and Conquer and Recurrences

– Recurrence Techniques

– Fast Matrix Multiplication

– Counting Inversions (5.3)

– Closest Pair (5.4)

– Multiplication (5.5)

– Quicksort and Median Finding

• Dynamic Programming

• Midterm,  Friday,  February 9
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Divide and Conquer

Array Mergesort(Array a){

n = a.Length;

if (n <= 1)

return a;

b = Mergesort(a[0 .. n/2]);

c = Mergesort(a[n/2+1 .. n-1]);

return Merge(b, c);

}
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Algorithm Analysis

• Cost of Merge

• Cost of Mergesort
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T(n) = 2T(n/2) + cn; T(1) = c;
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Recurrence Analysis

• Solution methods

– Unrolling recurrence

– Guess and verify

– Plugging in to a “Master Theorem”
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Useful Math Facts
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Unrolling the recurrence
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Substitution

Prove T(n) ≤ n (log2n + 1) for n ≥ 1

Induction:

Base Case:

Induction Hypothesis:

T(n) = 2T(n/2) + n; T(1) = 1;
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Master Theorem

• T(n) = a T(n/b) + O(nd)

• T(n) = O(nd) if d > logb a

• T(n) = O(nd log n) if d = logb a

• T(n) = O(nlogba) if d < logb a
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A better mergesort (?)

• Divide into 3 subarrays and recursively 

sort

• Apply 3-way merge

What is the recurrence? 11

Unroll recurrence for                  

T(n) = 3T(n/3) + dn
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T(n) = aT(n/b) + f(n)
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T(n) = T(n/2) + cn

Where does this recurrence arise?
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Recursive Matrix Multiplication

Multiply 2 x 2 Matrices:

| r    s |    | a    b|   |e    g|

| t    u |    | c    d|   | f    h|

r  = ae + bf

s  = ag + bh

t  =  ce + df

u = cg + dh

A N x N matrix can be viewed as 

a 2 x 2 matrix with entries that 

are (N/2) x (N/2) matrices. 

The recursive matrix 

multiplication algorithm 

recursively multiplies the       

(N/2) x (N/2) matrices and 

combines them using the 

equations for multiplying 2 x 2 

matrices

=

Recursive Matrix Multiplication

• How many recursive calls 

are made at each level?

• How much work in 

combining the results?

• What is the recurrence?

What is the run time for the recursive 

Matrix Multiplication Algorithm?

• Recurrence:

T(n) = 4T(n/2) + n
Total Work

n/4n/4 n/4 n/4 n/4n/4 n/4 n/4 n/4n/4 n/4 n/4n/4n/4 n/4 n/4

n/2 n/2 n/2 n/2

n
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T(n) = 2T(n/2) + n2 T(n) = 2T(n/2) + n1/2

Recurrences

• Three basic behaviors

– Dominated by initial case

– Dominated by base case

– All cases equal – we care about the depth

What you really need to know 

about recurrences

• Work per level changes geometrically with 

the level

• Geometrically increasing (x > 1)

– The bottom level wins

• Geometrically decreasing  (x < 1)

– The top level wins

• Balanced (x = 1)

– Equal contribution

Classify the following recurrences

(Increasing, Decreasing, Balanced)

• T(n) = n + 5T(n/8)

• T(n) = n + 9T(n/8)

• T(n) = n2 + 4T(n/2)

• T(n) = n3 + 7T(n/2)

• T(n) = n1/2 + 3T(n/4)


