CSE 421 Introduction to Algorithms

Richard Anderson Lecture 9, Winter 2024 Recurrences

Announcements

- Divide and Conquer and Recurrences
 - Recurrence Techniques
 - Fast Matrix Multiplication
 - Counting Inversions (5.3)
 - Closest Pair (5.4)
 - Multiplication (5.5)
 - Quicksort and Median Finding
- Dynamic Programming
- Midterm, Friday, February 9

T(n) = 2T(n/2) + cn; T(1) = c;

- Cost of Merge
- · Cost of Mergesort

Recurrence Analysis

- · Solution methods
 - Unrolling recurrence
 - Guess and verify
 - Plugging in to a "Master Theorem"

$$T(n) = aT(n/b) + f(n)$$

$$T(n) = T(n/2) + cn$$
Where does this recurrence arise?

Recursive Matrix Multiplication

- How many recursive calls are made at each level?
- How much work in combining the results?
- What is the recurrence?

What is the run time for the recursive Matrix Multiplication Algorithm?

Recurrence:

Recurrences

- Three basic behaviors
 - Dominated by initial case
 - Dominated by base case
 - All cases equal we care about the depth

What you really need to know about recurrences

- Work per level changes geometrically with the level
- Geometrically increasing (x > 1)

 The bottom level wins
- Geometrically decreasing (x < 1)

 The top level wins
- Balanced (x = 1)
 - Equal contribution

Classify the following recurrences (Increasing, Decreasing, Balanced)

- T(n) = n + 5T(n/8)
- T(n) = n + 9T(n/8)
- $T(n) = n^2 + 4T(n/2)$
- $T(n) = n^3 + 7T(n/2)$
- $T(n) = n^{1/2} + 3T(n/4)$