CSE 421
 Introduction to Algorithms

Richard Anderson
Lecture 9, Winter 2024
Recurrences

Announcements

- Divide and Conquer and Recurrences
- Recurrence Techniques
- Fast Matrix Multiplication
- Counting Inversions (5.3)
- Closest Pair (5.4)
- Multiplication (5.5)
- Quicksort and Median Finding
- Dynamic Programming
- Midterm, Friday, February 9

Divide and Conquer

Array Mergesort(Array a)\{

$$
\begin{aligned}
& \mathrm{n}=\text { a.Length; } \\
& \text { if }(\mathrm{n}<=1)
\end{aligned}
$$

return a;
$\mathrm{b}=$ Mergesort(a[0 .. $\mathrm{n} / 2])$;
$c=$ Mergesort(a[n/2+1 .. $n-1])$;
return Merge(b, c);
\}

Algorithm Analysis

- Cost of Merge
- Cost of Mergesort

$\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{cn} ; \mathrm{T}(1)=\mathrm{c} ;$

Recurrence Analysis

- Solution methods
- Unrolling recurrence
- Guess and verify
- Plugging in to a "Master Theorem"

Useful Math Facts

$$
\begin{aligned}
& k^{\log _{k} n}=n \\
& \log _{k} n=\frac{\log _{2} n}{\log _{2} k} \\
& k^{\log _{2} n}=n^{\log _{2} k} \\
& \sum_{i=0}^{n} x^{i}=\frac{1-x^{n+1}}{1-x}
\end{aligned}
$$

Unrolling the recurrence

$T(n)=2 T(n / 2)+n ; T(1)=1 ;$

Substitution

Prove $T(n) \leq n\left(\log _{2} n+1\right)$ for $n \geq 1$
Induction:
Base Case:

Induction Hypothesis:

Master Theorem

- $T(n)=a T(n / b)+O\left(n^{d}\right)$
- $T(n)=O\left(n^{d}\right)$
if $d>\log _{b} a$
- $T(n)=O\left(n^{d} \log n\right)$
if $d=\log _{b} a$
- $T(n)=O\left(n^{\log _{b} a}\right)$
if $d<\log _{b} a$

A better mergesort (?)

- Divide into 3 subarrays and recursively sort
- Apply 3-way merge

Unroll recurrence for $T(n)=3 T(n / 3)+d n$

$T(n)=a T(n / b)+f(n)$

$T(n)=T(n / 2)+c n$

Where does this recurrence arise?

Recursive Matrix Multiplication

Multiply 2×2 Matrices:
$\begin{array}{ll}\mid r & s \\ \mid t & u\end{array}\left|=\left|\begin{array}{lll}\mid a & b \mid & \mid e \\ \mid c & d \mid \\ \mid c & d \mid & \mid f\end{array}\right|\right.$
$r=a e+b f$
$s=a g+b h$
$\mathrm{t}=\mathrm{ce}+\mathrm{df}$
$u=c g+d h$

A $N \times N$ matrix can be viewed as
a 2×2 matrix with entries that are ($\mathrm{N} / 2$) $\times(\mathrm{N} / 2)$ matrices.

The recursive matrix
multiplication algorithm recursively multiplies the ($\mathrm{N} / 2$) x ($\mathrm{N} / 2$) matrices and combines them using the equations for multiplying 2×2 matrices

Recursive Matrix Multiplication

- How many recursive calls are made at each level?
- How much work in combining the results?
-What is the recurrence?

What is the run time for the recursive Matrix Multiplication Algorithm?

- Recurrence:
Total Work

$T(n)=4 T(n / 2)+n$

$$
\sum_{k=0}^{\log n} 2^{k} n=(2 n-1) n
$$

$T(n)=2 T(n / 2)+n^{2}$

$T(n)=2 T(n / 2)+n^{1 / 2}$

Recurrences

- Three basic behaviors
- Dominated by initial case
- Dominated by base case
- All cases equal - we care about the depth

What you really need to know about recurrences

- Work per level changes geometrically with the level
- Geometrically increasing ($x>1$)
- The bottom level wins
- Geometrically decreasing ($\mathrm{x}<1$)
- The top level wins
- Balanced ($\mathrm{x}=1$)
- Equal contribution

Classify the following recurrences (Increasing, Decreasing, Balanced)
 - $T(n)=n+5 T(n / 8)$

- $\mathrm{T}(\mathrm{n})=\mathrm{n}+9 \mathrm{~T}(\mathrm{n} / 8)$
- $T(n)=n^{2}+4 T(n / 2)$
- $\mathrm{T}(\mathrm{n})=\mathrm{n}^{3}+7 \mathrm{~T}(\mathrm{n} / 2)$
- $T(n)=n^{1 / 2}+3 T(n / 4)$

