CSE 421 Introduction to Algorithms

Richard Anderson
Lecture 9, Winter 2024
Recurrences

Announcements

- Divide and Conquer and Recurrences
 - Recurrence Techniques
 - Fast Matrix Multiplication
 - Counting Inversions (5.3)
 - Closest Pair (5.4)
 - Multiplication (5.5)
 - Quicksort and Median Finding
- Dynamic Programming
- Midterm, Friday, February 9

Divide and Conquer

```
Array Mergesort(Array a){
        n = a.Length;
        if (n <= 1)
                 return a;
        b = Mergesort(a[0 .. n/2]);
        c = Mergesort(a[n/2+1 .. n-1]);
        return Merge(b, c);
```

Algorithm Analysis

- Cost of Merge
- Cost of Mergesort

$$T(n) = 2T(n/2) + cn; T(1) = c;$$

Recurrence Analysis

- Solution methods
 - Unrolling recurrence
 - Guess and verify
 - Plugging in to a "Master Theorem"

Useful Math Facts

$$k^{\log_k n} = n$$

$$\log_k n = \frac{\log_2 n}{\log_2 k}$$

$$k^{\log_2 n} = n^{\log_2 k}$$

$$\sum_{i=0}^{n} x^{i} = \frac{1 - x^{n+1}}{1 - x}$$

Unrolling the recurrence

$$T(n) = 2T(n/2) + n; T(1) = 1;$$

Substitution

Prove $T(n) \le n (\log_2 n + 1)$ for $n \ge 1$

Induction:

Base Case:

Induction Hypothesis:

Master Theorem

•
$$T(n) = a T(n/b) + O(n^d)$$

•
$$T(n) = O(n^d)$$
 if $d > log_b$ a

•
$$T(n) = O(n^d \log n)$$
 if $d = \log_b a$

•
$$T(n) = O(n^{\log_b a})$$
 if $d < \log_b a$

A better mergesort (?)

- Divide into 3 subarrays and recursively sort
- Apply 3-way merge

Unroll recurrence for
$$T(n) = 3T(n/3) + dn$$

$$T(n) = aT(n/b) + f(n)$$

$$T(n) = T(n/2) + cn$$

Where does this recurrence arise?

Recursive Matrix Multiplication

Multiply 2 x 2 Matrices:

$$r = ae + bf$$

 $s = ag + bh$
 $t = ce + df$
 $u = cg + dh$

A N x N matrix can be viewed as a 2 x 2 matrix with entries that are (N/2) x (N/2) matrices.

The recursive matrix multiplication algorithm recursively multiplies the (N/2) x (N/2) matrices and combines them using the equations for multiplying 2 x 2 matrices

Recursive Matrix Multiplication

 How many recursive calls are made at each level?

 How much work in combining the results?

What is the recurrence?

What is the run time for the recursive Matrix Multiplication Algorithm?

Recurrence:

$$T(n) = 2T(n/2) + n^2$$

$T(n) = 2T(n/2) + n^{1/2}$

Recurrences

- Three basic behaviors
 - Dominated by initial case
 - Dominated by base case
 - All cases equal we care about the depth

What you really need to know about recurrences

- Work per level changes geometrically with the level
- Geometrically increasing (x > 1)
 - The bottom level wins
- Geometrically decreasing (x < 1)
 - The top level wins
- Balanced (x = 1)
 - Equal contribution

Classify the following recurrences (Increasing, Decreasing, Balanced)

- T(n) = n + 5T(n/8)
- T(n) = n + 9T(n/8)
- $T(n) = n^2 + 4T(n/2)$
- $T(n) = n^3 + 7T(n/2)$
- $T(n) = n^{1/2} + 3T(n/4)$