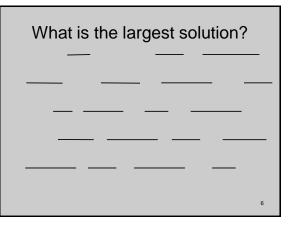


Announcements

Greedy Algorithms


- Solve problems with the simplest possible algorithm
- The hard part: showing that something simple actually works
- Pseudo-definition
 - An algorithm is Greedy if it builds its solution by adding elements one at a time using a simple rule

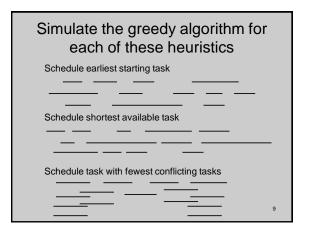
Scheduling Theory

- Tasks
 - Processing requirements, release times, deadlines
- Processors
- Precedence constraints
- · Objective function
 - Jobs scheduled, lateness, total execution time

Interval Scheduling

- Tasks occur at fixed times
- Single processor
- Maximize number of tasks completed
- Tasks {1, 2, . . ., n}
- Start and finish times, s(i), f(i)

Greedy Algorithm for Scheduling

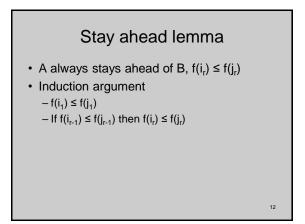

Let T be the set of tasks, construct a set of independent tasks I, A is the rule determining the greedy algorithm

I = { }

While (T is not empty) Select a task t from T by a rule A Add t to I Remove t and all tasks incompatible with t from T

Interval Scheduling Heuristics

- · Earliest starting time first
- Shortest interval first
- Smallest number of conflicting tasks
- · Earliest finishing time first



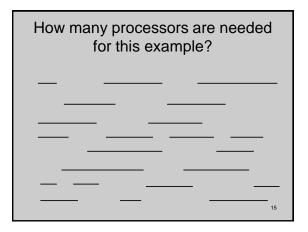
Greedy solution based on earliest finishing time Example 1 Example 2 Example 3 Market Backet Bac

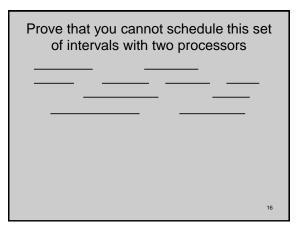
Theorem: Earliest Finish Algorithm is Optimal

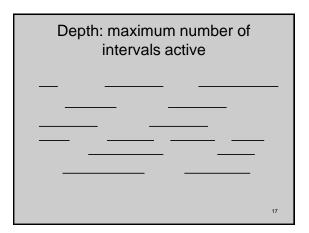
- Key idea: Earliest Finish Algorithm stays ahead
- Let $A = \{i_1, \ldots, i_k\}$ be the set of tasks found by EFA in increasing order of finish times
- Let $B = \{j_1, \ldots, j_m\}$ be the set of tasks found by a different algorithm in increasing order of finish times
- Show that for $r \le \min(k, m)$, $f(i_r) \le f(j_r)$

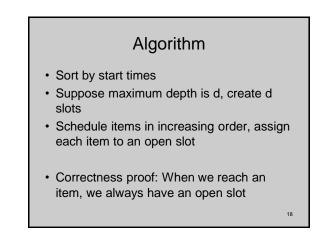
11

14


Completing the proof


- Let A = $\{i_1, \ldots, i_k\}$ be the set of tasks found by EFA in increasing order of finish times
- Let $O=\{j_1,\ldots,j_m\}$ be the set of tasks found by an optimal algorithm in increasing order of finish times


13


• If k < m, then the Earliest Finish Algorithm stopped before it ran out of tasks

Scheduling tasks

• Each task has a length t_i and a deadline d_i

19

- All tasks are available at the start
- One task may be worked on at a time
- All tasks must be completed
- Goal minimize maximum lateness
 Lateness = f_i d_i if f_i >= d_i

Example			
Time	Deadline		
2	2		
3	4		
2	3 Lateness 1		
3	2 Lateness 3		
		20	

Determine the minimum lateness		
Time	Deadline	
2	6	
3	4	
4	5	
5	12	
	21	