CSE 421
Introduction to Algorithms

Winter 2024
Lecture 4

Announcements

- Reading
- Start on Chapter 4
- Homework due tonight, new homework available
- Class Friday???
- No class next Monday (MLK)

Last Lecture

- Bipartite Graphs : two-colorable graphs
- Breadth First Search algorithm for testing twocolorability
- Two-colorable iff no odd length cycle
- BFS has cross edge iff graph has odd cycle

Breadth First Search

- All edges go between vertices on the same layer or adjacent layers

- A search algorithm from a vertex v can find all vertices in v's component
- While there is an unvisited vertex v, search from v to find a new component

Computing Connected Components in $\mathrm{O}(\mathrm{n}+\mathrm{m})$ time

- Undirected Graphs

Strongly connected components can be found in $\mathrm{O}(\mathrm{n}+\mathrm{m})$ time

- But it's tricky!
- Simpler problem: given a vertex v, compute the vertices in v 's scc in $O(n+m)$ time

Find a topological order for the following graph

Topological Sort

- Given a set of tasks with precedence constraints, find a linear order of the tasks

If a graph has a cycle, there is no topological sort

- Consider the first vertex on the cycle in the topological sort
- It must have an incoming edge

Definition: A graph is Acyclic if it has no cycles

Lemma: If a (finite) graph is acyclic, it has a vertex with in-degree 0

- Proof:
- Pick a vertex v_{1}, if it has in-degree 0 then done
- If not, let (v_{2}, v_{1}) be an edge, if v_{2} has in-degree 0 then done
- If not, let $\left(\mathrm{v}_{3}, \mathrm{v}_{2}\right)$ be an edge ...
- If this process continues for more than n steps, we have a repeated vertex, so we have a cycle

Topological Sort Algorithm

While there exists a vertex v with in-degree 0
Output vertex v
Delete the vertex vand all out going edges

Details for $\mathrm{O}(\mathrm{n}+\mathrm{m})$ implementation

- Maintain a list of vertices of in-degree 0
- Each vertex keeps track of its in-degree
- Update in-degrees and list when edges are removed
- m edge removals at $O(1)$ cost each

