CSE 421
Introduction to Algorithms

Winter 2024
Lecture 4

Announcements

• Reading
 — Start on Chapter 4
• Homework due tonight, new homework available
• Class Friday???
• No class next Monday (MLK)

Graph Theory

• $G = (V, E)$
 — V: vertices, $|V| = n$
 — E: edges, $|E| = m$
• Undirected graphs
 — Edges sets of two vertices \(\{u, v\} \)
• Directed graphs
 — Edges ordered pairs \((u, v) \)
• Many other flavors
 — Edge / vertices weights
 — Parallel edges
 — Self loops

 • Path: \(v_1, v_2, \ldots, v_k \) with \((v_i, v_{i+1}) \) in E
 — Simple Path
 — Cycle
 — Simple Cycle
• Neighborhood
 — $N(v)$
• Distance
• Connectivity
 — Undirected
 — Directed (strong connectivity)
• Trees
 — Rooted
 — Unrooted

Last Lecture

• Bipartite Graphs: two-colorable graphs
• Breadth First Search algorithm for testing two-colorability
 — Two-colorable iff no odd length cycle
 — BFS has cross edge iff graph has odd cycle

Graph Search

• Data structure for next vertex to visit determines search order

Graph search

Breadth First Search

$S = \{s\}$
while S is not empty
 $u = \text{Dequeue}(S)$
 if u is unvisited
 visit u
 foreach v in $N(u)$
 Enqueue(S, v)

Depth First Search

$S = \{s\}$
while S is not empty
 $u = \text{Pop}(S)$
 if u is unvisited
 visit u
 foreach v in $N(u)$
 Push(S, v)
Breadth First Search
• All edges go between vertices on the same layer or adjacent layers

Depth First Search
• Each edge goes between vertices on the same branch
• No cross edges

Connected Components
• Undirected Graphs
 Computing Connected Components in O(n+m) time
 • A search algorithm from a vertex v can find all vertices in v's component
 • While there is an unvisited vertex v, search from v to find a new component

Directed Graphs
• A Strongly Connected Component is a subset of the vertices with paths between every pair of vertices.

Identify the Strongly Connected Components
Strongly connected components can be found in $O(n+m)$ time

- But it’s tricky!
- Simpler problem: given a vertex v, compute the vertices in v's scc in $O(n+m)$ time

Topological Sort

- Given a set of tasks with precedence constraints, find a linear order of the tasks

Find a topological order for the following graph

If a graph has a cycle, there is no topological sort

- Consider the first vertex on the cycle in the topological sort
- It must have an incoming edge

Definition: A graph is acyclic if it has no cycles

Lemma: If a (finite) graph is acyclic, it has a vertex with in-degree 0

- Proof:
 - Pick a vertex v_1, if it has in-degree 0 then done
 - If not, let (v_2, v_1) be an edge, if v_2 has in-degree 0 then done
 - If not, let (v_3, v_2) be an edge . . .
 - If this process continues for more than n steps, we have a repeated vertex, so we have a cycle

Topological Sort Algorithm

While there exists a vertex v with in-degree 0
Output vertex v
Delete the vertex v and all out going edges
Details for O(n+m) implementation

- Maintain a list of vertices of in-degree 0
- Each vertex keeps track of its in-degree
- Update in-degrees and list when edges are removed
- m edge removals at O(1) cost each