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Announcements

• Reading

– Start on Chapter 4

• Homework due tonight, new homework 
available

• Class Friday???

• No class next Monday (MLK)
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Graph Theory

• G = (V, E)
– V:  vertices,  |V|= n
– E:  edges,  |E| = m 

• Undirected graphs
– Edges sets of two vertices 

{u, v}
• Directed graphs

– Edges ordered pairs (u, v)
• Many other flavors

– Edge / vertices weights
– Parallel edges
– Self loops

• Path:  v1, v2, …, vk, with 
(vi, vi+1) in E
– Simple Path
– Cycle
– Simple Cycle

• Neighborhood
– N(v)

• Distance
• Connectivity

– Undirected
– Directed (strong connectivity)

• Trees
– Rooted
– Unrooted
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Last Lecture

• Bipartite Graphs : two-colorable graphs

• Breadth First Search algorithm for testing two-
colorability

– Two-colorable iff no odd length cycle

– BFS has cross edge iff graph has odd cycle
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Graph Search

• Data structure for next vertex to visit 
determines search order
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Graph search

Breadth First Search

S = {s}

while S is not empty

u = Dequeue(S)

if u is unvisited

visit u

foreach v in N(u)

Enqueue(S, v)

Depth First Search

S = {s}

while S is not empty

u = Pop(S)

if u is unvisited

visit u

foreach v in N(u)

Push(S, v)

6



Breadth First Search

• All edges go between vertices on the same 
layer or adjacent layers
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Depth First Search

• Each edge goes between 
vertices on the same 
branch

• No cross edges
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Connected Components

• Undirected Graphs
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Computing Connected Components in 
O(n+m) time

• A search algorithm from a vertex v can find all 
vertices in v’s component

• While there is an unvisited vertex v, search 
from v to find a new component
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Directed Graphs

• A Strongly Connected Component is a subset 
of the vertices with paths between every pair 
of vertices.
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Identify the Strongly Connected 
Components
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Strongly connected components can be 
found in O(n+m) time

• But it’s tricky!

• Simpler problem: given a vertex v, compute the 
vertices in v’s scc in O(n+m) time
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Topological Sort

• Given a set of tasks with precedence 
constraints, find a linear order of the tasks
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Find a topological order for the following 
graph
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If a graph has a cycle, there is no 
topological sort

• Consider the first vertex 
on the cycle in the 
topological sort

• It must have an 
incoming edge B

A

D

E

F
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Definition:  A graph is 

Acyclic if it has no cycles
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Lemma: If a (finite) graph is acyclic, it has a 
vertex with in-degree 0

• Proof:  

– Pick a vertex v1, if it has in-degree 0 then done

– If not, let (v2, v1) be an edge, if v2 has in-degree 0 
then done

– If not, let (v3, v2) be an edge . . .

– If this process continues for more than n steps, we 
have a repeated vertex, so we have a cycle
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Topological Sort Algorithm

While there exists a vertex v with in-degree 0

Output vertex v

Delete the vertex v and all out going edges
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Details for O(n+m) implementation

• Maintain a list of vertices of in-degree 0

• Each vertex keeps track of its in-degree

• Update in-degrees and list when edges are 
removed

• m edge removals at O(1) cost each
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