
CSE 421
Introduction to Algorithms

Winter 2024

Lecture 4

1

Announcements

• Reading

– Start on Chapter 4

• Homework due tonight, new homework
available

• Class Friday???

• No class next Monday (MLK)

2

Graph Theory

• G = (V, E)
– V: vertices, |V|= n
– E: edges, |E| = m

• Undirected graphs
– Edges sets of two vertices

{u, v}
• Directed graphs

– Edges ordered pairs (u, v)
• Many other flavors

– Edge / vertices weights
– Parallel edges
– Self loops

• Path: v1, v2, …, vk, with
(vi, vi+1) in E
– Simple Path
– Cycle
– Simple Cycle

• Neighborhood
– N(v)

• Distance
• Connectivity

– Undirected
– Directed (strong connectivity)

• Trees
– Rooted
– Unrooted

3

Last Lecture

• Bipartite Graphs : two-colorable graphs

• Breadth First Search algorithm for testing two-
colorability

– Two-colorable iff no odd length cycle

– BFS has cross edge iff graph has odd cycle

4

Graph Search

• Data structure for next vertex to visit
determines search order

5

Graph search

Breadth First Search

S = {s}

while S is not empty

u = Dequeue(S)

if u is unvisited

visit u

foreach v in N(u)

Enqueue(S, v)

Depth First Search

S = {s}

while S is not empty

u = Pop(S)

if u is unvisited

visit u

foreach v in N(u)

Push(S, v)

6

Breadth First Search

• All edges go between vertices on the same
layer or adjacent layers

2

8

3

7654

1

7

Depth First Search

• Each edge goes between
vertices on the same
branch

• No cross edges

1

2

5

6

12743

8 9

10 11

8

Connected Components

• Undirected Graphs

9

Computing Connected Components in
O(n+m) time

• A search algorithm from a vertex v can find all
vertices in v’s component

• While there is an unvisited vertex v, search
from v to find a new component

10

Directed Graphs

• A Strongly Connected Component is a subset
of the vertices with paths between every pair
of vertices.

11

Identify the Strongly Connected
Components

12

Strongly connected components can be
found in O(n+m) time

• But it’s tricky!

• Simpler problem: given a vertex v, compute the
vertices in v’s scc in O(n+m) time

13

Topological Sort

• Given a set of tasks with precedence
constraints, find a linear order of the tasks

142 143

311

341

351 333

332

312 431

421

451

14

Find a topological order for the following
graph

E

F

D

A

C

B

K

J
G

H
I

L

15

If a graph has a cycle, there is no
topological sort

• Consider the first vertex
on the cycle in the
topological sort

• It must have an
incoming edge B

A

D

E

F

C

Definition: A graph is

Acyclic if it has no cycles

16

Lemma: If a (finite) graph is acyclic, it has a
vertex with in-degree 0

• Proof:

– Pick a vertex v1, if it has in-degree 0 then done

– If not, let (v2, v1) be an edge, if v2 has in-degree 0
then done

– If not, let (v3, v2) be an edge . . .

– If this process continues for more than n steps, we
have a repeated vertex, so we have a cycle

17

Topological Sort Algorithm

While there exists a vertex v with in-degree 0

Output vertex v

Delete the vertex v and all out going edges

E

F

D

A

C

B

K

J
G

H
I

L 18

Details for O(n+m) implementation

• Maintain a list of vertices of in-degree 0

• Each vertex keeps track of its in-degree

• Update in-degrees and list when edges are
removed

• m edge removals at O(1) cost each

19

