CSE 421
Introduction to Algorithms
Winter 2024
Lecture 3

## Schedule

- Monday
- Run time/Big-Oh (most of this deferred to section)
- Graph theory
- Search/Bipartite Matching
- Wednesday
- Connectivity
- Topological Sort
- Friday
- Greedy Algorithms


## Announcements

- Reading
- Chapter 3 (Mostly review)
- Start on Chapter 4
- Office Hours:

| Richard Anderson | CSE2 344, Mon 3:30-4:30 | CSE2 344, Fri 2:30-3:30 |
| :--- | :--- | :--- |
| Raymond Gao | Allen 3 ${ }^{\text {rd }}$ Floor, Tue 5:30-6:30 | CSE2 150, Thu 5:30-6:30 |
| Sophie Robertson | Allen 4 ${ }^{\text {th }}$ Floor, Mon 11:30-1:30 |  |
| Aman Thukral | Allen 2 $^{\text {nd }}$ Floor, Fri 3:30-5:30 |  |
| Kaiyuan Liu | Allen 2 ${ }^{\text {nd }}$ Floor, Tues 9:30-11:30 |  |
| Tom Zhaoyang Tian | CSE2 153, Wed 9:30-11:30 |  |
| Albert Weng | CSE2 131, Mon 10:30-11:30 | CSE2 131, Fri 10:30-11:30 |

## Run time / Big Oh

- Run time function $T(n)$
$-T(n)$ is the maximum time to solve an instance of size $n$
- Disregard constant functions
- $T(n)$ is $O(f(n)) \quad\left[T: Z^{+} \rightarrow R^{+}\right]$
- If $n$ is sufficiently large, $T(n)$ is bounded by a constant multiple of $f(\mathrm{n})$
- Exist $c, n_{0}$, such that for $n>n_{0}, T(n)<c f(n)$
- $T(n)$ is $\Omega(f(n)) \quad\left[T: Z^{+} \rightarrow R^{+}\right]$
- If $n$ is sufficiently large, $T(n)$ is at least a constant multiple of $f(\mathrm{n})$
- Exist $\epsilon>0, n_{0}$, such that for $n>n_{0}, T(n)>\in f(n)$


## Graph Theory

- $G=(V, E)$
- V - vertices
- E-edges
- Undirected graphs
- Edges sets of two vertices $\{u, v\}$
- Directed graphs
- Edges ordered pairs (u, v)
- Many other flavors
- Edge / vertices weights
- Parallel edges
- Self loops


## Definitions

- Path: $v_{1}, v_{2}, \ldots, v_{k}$, with $\left(v_{i}, v_{i+1}\right)$ in $E$ - Simple Path
- Cycle
- Simple Cycle

- Neighborhood
- $\mathrm{N}^{+}(\mathrm{v}), \quad \mathrm{N}^{-}(\mathrm{v}$
- Distance
- Connectivity
- Directed (strong connectivity)
- Trees
- Rooted
- Unrooted



## Graph Representation

$V=\{a, b, c, d\}$
$E=\{\{a, b\},\{a, c\},\{a, d\},\{b, d\}\}$

|  | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- |
| 1 |  | 0 | 1 |
| 1 | 0 |  | 0 |
| 1 | 1 | 0 |  |

Adjacency List

Incidence Matrix

## Graph search

- Find a path from $s$ to $t$

$$
S=\{s\}
$$

$$
\text { while } S \text { is not empty }
$$

$u=$ Select(S)
visit u
foreach $v$ in $N(u)$
if $v$ is unvisited
Add(S, v)
$\operatorname{Pred}[v]=u$
if $(v=t)$ then path found

## Breadth first search

- Explore vertices in layers
- s in layer 1
- Neighbors of $s$ in layer 2
- Neighbors of layer 2 in layer $3 \ldots$



## Breadth First Search

- Build a BFS tree from s

Initialize Level[v] = -1 for all $v$;
$Q=\{s\}$
Level[s] = 1;
while $Q$ is not empty
$u=$ Q.Dequeue()
foreach $v$ in $N(u)$
if (Level[ v$]==-1$ )
Q.Enqueue (v)
$\operatorname{Pred}[v]=u$
$\operatorname{Level}[\mathrm{v}]=\operatorname{Level}[\mathrm{u}]+1$

## Key observation

- All edges go between vertices on the same layer or adjacent layers



## Bipartite Graphs

- A graph V is bipartite if V can be partitioned into $\mathrm{V}_{1}, \mathrm{~V}_{2}$ such that all edges go between $\mathrm{V}_{1}$ and $V_{2}$
- A graph is bipartite if it can be two colored



## Can this graph be two colored?



## Algorithm

- Run BFS
- Color odd layers red, even layers blue
- If no edges between the same layer, the graph is bipartite
- If edge between two vertices of the same layer, then there is an odd cycle, and the graph is not bipartite

Theorem: A graph is bipartite if and only if it has no odd cycles

## Lemma 1

- If a graph contains an odd cycle, it is not bipartite



## Lemma 2

- If a BFS tree has an intra-level edge, then the graph has an odd length cycle


## Graph Search

- Data structure for next vertex to visit determines search order


