CSE 421 Introduction to Algorithms

Winter 2024 Lecture 3

Announcements

- Reading
 - Chapter 3 (Mostly review)
 - Start on Chapter 4
- Office Hours:

Richard Anderson	CSE2 344, Mon 3:30-4:30	CSE2 344, Fri 2:30-3:30
Raymond Gao	Allen 3 rd Floor, Tue 5:30-6:30	CSE2 150, Thu 5:30-6:30
Sophie Robertson	Allen 4th Floor, Mon 11:30-1:30	
Aman Thukral	Allen 2 nd Floor, Fri 3:30-5:30	
Kaiyuan Liu	Allen 2 nd Floor, Tues 9:30-11:30	
Tom Zhaoyang Tian	CSE2 153, Wed 9:30-11:30	
Albert Weng	CSE2 131, Mon 10:30-11:30	CSE2 131, Fri 10:30-11:30

Schedule

- Monday
 - Run time/Big-Oh (most of this deferred to section)
 - Graph theory
 - Search/Bipartite Matching
- Wednesday
 - Connectivity
 - Topological Sort
- Friday
 - Greedy Algorithms

Run time / Big Oh

- Run time function T(n)
 - T(n) is the maximum time to solve an instance of size n
- Disregard constant functions
- T(n) is O(f(n)) $[T:Z^+ \rightarrow R^+]$
 - If n is sufficiently large, T(n) is bounded by a constant multiple of f(n)
- Exist c, n_0 , such that for $n > n_0$, T(n) < c f(n)
- T(n) is Ω(f(n)) $[T:Z^+ \rightarrow R^+]$
 - If n is sufficiently large, T(n) is at least a constant multiple
 - Exist $\epsilon > 0$, n_0 , such that for $n > n_0$, $T(n) > \epsilon f(n)$

Graph Theory

- G = (V, E)
 - V vertices
 - E edges
- Undirected graphs
 - Edges sets of two vertices {u, v}
- Directed graphs
 - Edges ordered pairs (u, v)
- · Many other flavors
 - Edge / vertices weights
 - Parallel edges
 - Self loops

Definitions

- Path: v₁, v₂, ..., v_{k'} with (v_i, v_{i+1}) in E

 Simple Path
 Cycle
 Simple Cycle

 Neighborhood
- - N(v) N⁺(v), N⁻(v)
- Distance
- Connectivity
- Undirected
 Directed (strong connectivity)
- Trees

 - RootedUnrooted

Breadth first search • Explore vertices in layers - s in layer 1 - Neighbors of s in layer 2 - Neighbors of layer 2 in layer 3 . . .

Can this graph be two colored?

Algorithm

- Run BFS
- Color odd layers red, even layers blue
- If no edges between the same layer, the graph is bipartite
- If edge between two vertices of the same layer, then there is an odd cycle, and the graph is not bipartite

14

Theorem: A graph is bipartite if and only if it has no odd cycles

Lemma 1

• If a graph contains an odd cycle, it is not bipartite

Lemma 2

• If a BFS tree has an *intra-level edge*, then the graph has an odd length cycle

Intra-level edge: both end points are in the same level

Lemma 3

• If a graph has no odd length cycles, then it is bipartite

18

