CSE 421 Introduction to Algorithms

Winter 2024

Lecture 3

Announcements

- Reading
 - Chapter 3 (Mostly review)
 - Start on Chapter 4
- Office Hours:

Richard Anderson	CSE2 344, Mon 3:30-4:30	CSE2 344, Fri 2:30-3:30	
Raymond Gao	Allen 3 rd Floor, Tue 5:30-6:30	CSE2 150, Thu 5:30-6:30	
Sophie Robertson	Allen 4 th Floor, Mon 11:30-1:30		
Aman Thukral	Allen 2 nd Floor, Fri 3:30-5:30		
Kaiyuan Liu	Allen 2 nd Floor, Tues 9:30-11:30		
Tom Zhaoyang Tian	CSE2 153, Wed 9:30-11:30		
Albert Weng	CSE2 131, Mon 10:30-11:30	CSE2 131, Fri 10:30-11:30	

Schedule

- Monday
 - Run time/Big-Oh (most of this deferred to section)
 - Graph theory
 - Search/Bipartite Matching
- Wednesday
 - Connectivity
 - Topological Sort
- Friday
 - Greedy Algorithms

Run time / Big Oh

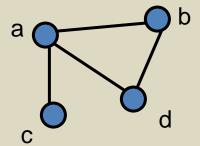
- Run time function T(n)
 - T(n) is the maximum time to solve an instance of size n
- Disregard constant functions
- T(n) is O(f(n)) $[T:Z^+ \rightarrow R^+]$
 - If n is sufficiently large, T(n) is bounded by a constant multiple of f(n)
 - Exist c, n_0 , such that for $n > n_0$, T(n) < c f(n)
- T(n) is $\Omega(f(n))$ [T : Z⁺ \rightarrow R⁺]
 - If n is sufficiently large, T(n) is at least a constant multiple of f(n)
 - Exist $\epsilon > 0$, n_0 , such that for $n > n_0$, $T(n) > \epsilon f(n)$

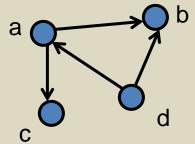
Graph Theory

- G = (V, E)
 - V vertices
 - -E-edges
- Undirected graphs
 - Edges sets of two vertices {u, v}
- Directed graphs
 - Edges ordered pairs (u, v)
- Many other flavors
 - Edge / vertices weights
 - Parallel edges
 - Self loops

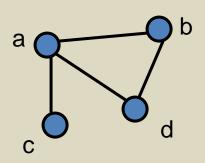
Definitions

- Path: $v_1, v_2, ..., v_k$, with (v_i, v_{i+1}) in E
 - Simple Path
 - Cycle
 - Simple Cycle
- Neighborhood
 - -N(v)
 - $N^{+}(v), N^{-}(v)$
- Distance
- Connectivity
 - Undirected
 - Directed (strong connectivity)
- Trees
 - Rooted
 - Unrooted



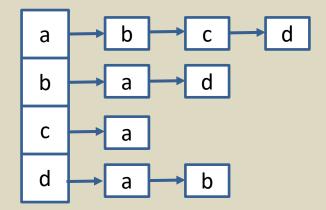


Graph Representation



$$V = \{ a, b, c, d \}$$

 $E = \{ \{a, b\}, \{a, c\}, \{a, d\}, \{b, d\} \}$



Adjacency List

	1	1	1
1		0	1
1	0		0
1	1	0	

Incidence Matrix

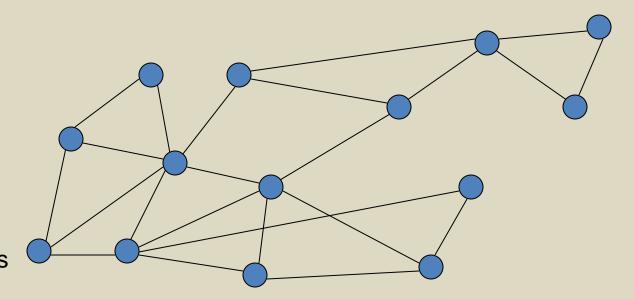
Graph search

Find a path from s to t

```
S = \{s\}
while S is not empty
         u = Select(S)
         visit u
         foreach v in N(u)
                   if v is unvisited
                             Add(S, v)
                             Pred[v] = u
                   if (v = t) then path found
```

Breadth first search

- Explore vertices in layers
 - s in layer 1
 - Neighbors of s in layer 2
 - Neighbors of layer 2 in layer 3 . . .



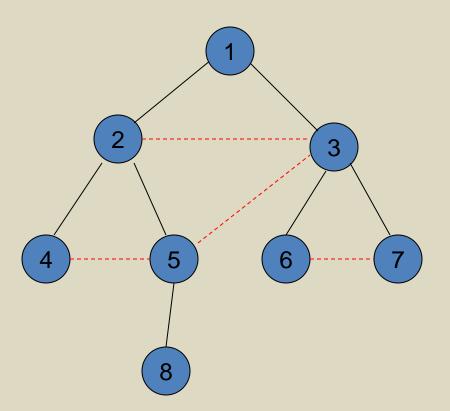
Breadth First Search

Build a BFS tree from s

```
Initialize Level[v] = -1 for all v;
Q = \{s\}
Level[s] = 1;
while Q is not empty
         u = Q.Dequeue()
         foreach v in N(u)
                   if (Level[v] == -1)
                             Q.Enqueue(v)
                             Pred[v] = u
                             Level[v] = Level[u] + 1
```

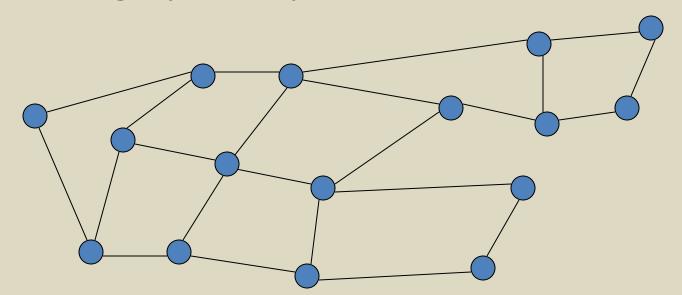
Key observation

 All edges go between vertices on the same layer or adjacent layers

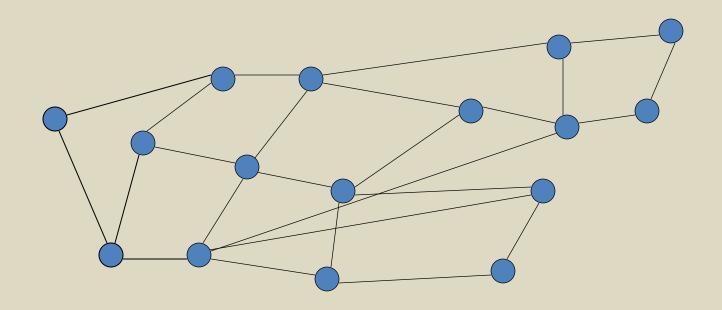


Bipartite Graphs

- A graph V is bipartite if V can be partitioned into V_1 , V_2 such that all edges go between V_1 and V_2
- A graph is bipartite if it can be two colored



Can this graph be two colored?



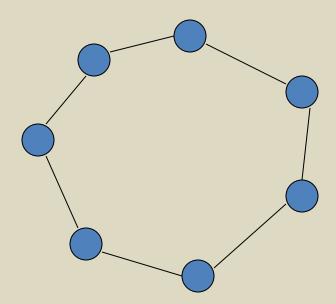
Algorithm

- Run BFS
- Color odd layers red, even layers blue
- If no edges between the same layer, the graph is bipartite
- If edge between two vertices of the same layer, then there is an odd cycle, and the graph is not bipartite

Theorem: A graph is bipartite if and only if it has no odd cycles

Lemma 1

 If a graph contains an odd cycle, it is not bipartite



Lemma 2

• If a BFS tree has an *intra-level edge*, then the graph has an odd length cycle

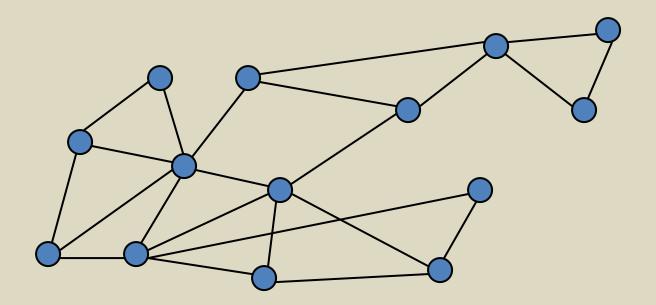
Intra-level edge: both end points are in the same level

Lemma 3

 If a graph has no odd length cycles, then it is bipartite

Graph Search

 Data structure for next vertex to visit determines search order

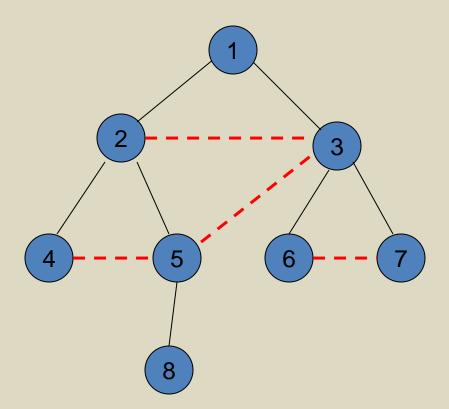


Graph search

```
Depth First Search
Breadth First Search
    S = \{s\}
                                                   S = \{s\}
    while S is not empty
                                                   while S is not empty
         u = Dequeue(S)
                                                       u = Pop(S)
         if u is unvisited
                                                       if u is unvisited
              visit u
                                                            visit u
              foreach v in N(u)
                                                            foreach v in N(u)
                   Enqueue(S, v)
                                                                 Push(S, v)
```

Breadth First Search

 All edges go between vertices on the same layer or adjacent layers



Depth First Search

- Each edge goes between,
 vertices on the same
 branch
- No cross edges

