CSE 421 Introduction to Algorithms

Richard Anderson Winter 2024 Lecture 2

Course Mechanics

- Homework
 - Due Wednesdays
 - About 5 problems, sometimes programming
 - Target: 1 week turnaround on grading
- Exams (In class)
 - Midterm, Friday, February 9, 2024
 - Final, Monday, March 11, 2:30-4:20 pm
- Approximate grade weighting – HW: 50, MT: 15, Final: 35
- Course web
 - Slides, Homework, Section Materials
- Office Hours have been posted

Stable Matching: Formal Problem

- Input
 - Preference lists for $m_1, m_2, ..., m_n$
 - Preference lists for $w_1, w_2, ..., w_n$
- Output
 - Perfect matching M satisfying stability property (e.g., no instabilities) :

```
For all m', m", w', w"

If (m', w') \in M and (m", w") \in M then

(m' prefers w' to w") or (w" prefers m" to m')
```

Idea for an Algorithm

m proposes to w

If w is unmatched, w accepts

If w is matched to m₂

If w prefers m to m_2 , w accepts m, dumping m_2

If w prefers m_2 to m, w rejects m

Unmatched m proposes to the highest w on its preference list that it has not already proposed to

Algorithm

Initially all m in M and w in W are free While there is a free m

w highest on m's list that m has not proposed to if w is free, then match (m, w)

else

suppose (m_2, w) is matched if w prefers m to m_2 unmatch (m_2, w) match (m, w)

Example

 $m_1: w_1 w_2 w_3$ $m_2: w_1 w_3 w_2$ $m_3: w_1 w_2 w_3$ w₁: m₂ m₃ m₁ $W_2: m_3 m_1 m_2$ $W_3: m_3 m_1 m_2$

Order: $m_1, m_2, m_3, m_1, m_3, m_1$

Does this work?

- Does it terminate?
- Is the result a stable matching?

- Begin by identifying invariants and measures of progress
 - m's proposals get worse (have higher m-rank)
 - Once w is matched, w stays matched
 - w's partners get better (have lower w-rank)

Claim: If an m reaches the end of its list, then all the w's are matched

Claim: The algorithm stops in at most n² steps

When the algorithms halts, every w is matched

Hence, the algorithm finds a perfect matching

The resulting matching is stable

Suppose

 $(m_1, w_1) \in M, (m_2, w_2) \in M$ m₁ prefers w₂ to w₁

How could this happen?

Result

- Simple, O(n²) algorithm to compute a stable matching
- Corollary
 - A stable matching always exists

A closer look

Stable matchings are not necessarily fair

How many stable matchings can you find?

Algorithm under specified

- Many different ways of picking m's to propose
- Surprising result

- All orderings of picking free m's give the same result

- Proving this type of result
 - Reordering argument
 - Prove algorithm is computing something mores specific
 - Show property of the solution so it computes a specific stable matching

M-rank and W-rank of matching

- m-rank: position of matching w in preference list
- M-rank: sum of m-ranks
- w-rank: position of matching m in preference list
- W-rank: sum of w-ranks

 $m_{1}: w_{1} w_{2} w_{3} m_{1}^{(4)}$ $m_{2}: w_{1} w_{3} w_{2}$ $m_{3}: w_{1} w_{2} w_{3} m_{2}^{(4)}$ $w_{1}: m_{2} m_{3} m_{1}$ $w_{2}: m_{3} m_{1} m_{2}$ $w_{3}: m_{3} m_{1} m_{2} m_{2}^{(4)}$

What is the M-rank?

What is the W-rank?

Suppose there are n m's, and n w's

• What is the minimum possible M-rank?

• What is the maximum possible M-rank?

 Suppose each m is matched with a random w, what is the expected M-rank?

Random Preferences

Suppose that the preferences are completely random

 $\begin{array}{c} m_{1}: w_{8} w_{3} w_{1} w_{5} w_{9} w_{2} w_{4} w_{6} w_{7} w_{10} \\ m_{2}: w_{7} w_{10} w_{1} w_{9} w_{3} w_{4} w_{8} w_{2} w_{5} w_{6} \\ \dots \\ w_{1}: m_{1} m_{4} m_{9} m_{5} m_{10} m_{3} m_{2} m_{6} m_{8} m_{7} \\ \end{array}$

 w_2 : $m_5 m_8 m_1 m_3 m_2 m_7 m_9 m_{10} m_4 m_6$

. . .

If there are n m's and n w's, what is the expected value of the M-rank and the W-rank when the proposal algorithm computes a stable matching?

Generating a random permutation

```
public static int[] Permutation(int n, Random rand) {
    int[] arr = IdentityPermutation(n);
```

```
for (int i = 1; i < n; i++) {
    int j = rand.Next(0, i + 1);
    int temp = arr[i];
    arr[i] = arr[j];
    arr[j] = temp;
}
return arr;</pre>
```

}

Stable Matching Algorithms

- M Proposal Algorithm

 Iterate over all m's until all are matched
- W Proposal Algorithm
 - Change the role of m's and w's
 - Iterate over all w's until all are matched
- Compare M-Proposal and W-Proposal algorithms for moderate sized n (n≅1000)
 - Plot average m-rank and w-rank as a function of n. Do you have a mathematical explanation of the curves?

What is the run time of the Stable Matching Algorithm?

Initially all m in M and w in W are free While there is a free m Executed at most n^2 times w highest on m's list that m has not proposed to if w is free, then match (m, w) else suppose (m₂, w) is matched if w prefers m to m₂ unmatch (m₂, w) match (m w)

match (m, w)

O(1) time per iteration

- Find free m
- Find next available w
- If w is matched, determine m₂
- Test if w prefer m to m₂
- Update matching

What does it mean for an algorithm to be efficient?

Key ideas

- Formalizing real world problem
 - Model: graph and preference lists
 - Mechanism: stability condition
- Specification of algorithm with a natural operation
 - Proposal
- Establishing termination of process through invariants and progress measure
- Under specification of algorithm
- Establishing uniqueness of solution

A question to think about

- The problem has been formulated at a bipartite problem – with a matching between sets M and W
- What if all elements are in the same set X (and we assume |X| = 2n)

 This is referred to as the stable roommates problem

- Does an analog of the G-S algorithm apply?
- Does the roommates problem always have a stable solution?