CSE 421

Introduction to Algorithms

Richard Anderson
Winter 2024
Lecture 1
1/3/2024
CSE 421, Lecture 1

\qquad

CSE 421 Course Introduction

- CSE 421, Introductions to Algorithms
- MWF 1:30-2:20 PM, CSE2 G10
- Thursday Section
- Instructor
- Richard Anderson, anderson@cs.washington.edu
- Office hours:
- Office hours: TBD, CSE2 344
- Teaching Assistants
- Raymond Gao, Sophie Robertson, Aman Thukral, Kaiyuan Liu, Albert Weng, Tom Zhaoyang Tian

Announcements

- It's on the course website
- https://courses.cs.washington.edu/courses/cse421/24wi/
- Homework weekly
- Due Wednesdays
- HW 1, Due Wednesday, January 10, 2024.
- It's on the website
- Homework is to be submitted electronically
- Due at 11:59 pm, Fridays. Five late days.
- Edstem Discussion Board
- Panopto Videos

1/3/2024
CSE 421, Lecture 1

Course Mechanics

- Homework
- Due Wednesdays
- Mix of written problems and programming
- Target: 1-week turnaround on grading
- Exams
- Midterm, Friday, February 9
- Final, Monday, March 11, 2:30-4:20 PM
- Approximate grade weighting:
- Course web
- Slides, Handouts, Discussion Board
- Canvas
- Panopto videos
- Section on Thursdays
- Recent addition for CSE421

All of Computer Science is the Study of Algorithms

How to study algorithms

- Zoology
- Mine is faster than yours is
- Algorithmic ideas
- Where algorithms apply
- What makes an algorithm work
- Algorithmic thinking
- Algorithm practice

Introductory Problem: Stable Matching

- Setting:
- Assign TAs to Instructors
- Avoid having TAs and Instructors wanting changes
- E.g., Prof A. would rather have student X than her current TA, and student X would rather work for Prof A. than his current instructor.

Example (1 of 3)

$m_{1}: w_{1} w_{2}$	$m_{1} \bigcirc$	$\bigcirc w_{1}$
$m_{2}: w_{2} w_{1}$		
$w_{1}: m_{1} m_{2}$		
$w_{2}: m_{2} m_{1}$	$m_{2} \bigcirc$	w_{2}

Example (3 of 3)

$m_{1}: w_{1} w_{2}$
$m_{2}: w_{2} w_{1}$
$w_{1}: m_{2} m_{1}$
$w_{2}: m_{1} m_{2}$
$\mathrm{m}_{1} \mathrm{O}$
OW
$\mathrm{m}_{2}: \mathrm{w}_{2} \mathrm{w}_{1}$
$w_{1}: m_{2} m_{1}$
$\mathrm{w}_{2}: \mathrm{m}_{1} \mathrm{~m}_{2}$
$\mathrm{m}_{2} \mathrm{O}$
O W_{2}

Formal Problem

- Input
- Preference lists for $m_{1}, m_{2}, \ldots, m_{n}$
- Preference lists for $w_{1}, w_{2}, \ldots, w_{n}$
- Output
- Perfect matching M satisfying stability property:
If $\left(m^{\prime}, w^{\prime}\right) \in M$ and $\left(m^{\prime \prime}, w^{\prime \prime}\right) \in M$ then
(m^{\prime} prefers w^{\prime} to $w^{\prime \prime}$) or ($w^{\prime \prime}$ prefers $m^{\prime \prime}$ to m^{\prime})

1/3/2024

Algorithm

Initially all m in M and w in W are free
While there is a free m
w highest on m's list that m has not proposed to
if w is free, then match (m, w) else
suppose $\left(m_{2}, w\right)$ is matched
if w prefers m to m_{2}
unmatch $\left(m_{2}, w\right)$
match (m, w)

Does this work?

- Does it terminate?
- Is the result a stable matching?
- Begin by identifying invariants and measures of progress
- m's proposals get worse (have higher m-rank)
- Once w is matched, w stays matched
- w's partners get better (have lower w-rank)

Idea for an Algorithm

m proposes to w
If w is unmatched, w accepts
If w is matched to m_{2}
If w prefers m to $m_{2} w$ accepts m, dumping m_{2}
If w prefers m_{2} to m, w rejects m

Unmatched m proposes to the highest w on its preference list that it has not already proposed to
1/3/2024
CSE 421, Lecture 1
14

	EXample	
$m_{1}: w_{1} w_{2} w_{3}$		
$m_{2}: w_{1} w_{3} w_{2}$		
$m_{3}: w_{1} w_{2} w_{3}$	$m_{1} \bigcirc$	
$w_{1}: m_{2} m_{3} m_{1}$		w_{1}
$w_{2}: m_{3} m_{1} m_{2}$	$m_{3} \bigcirc$	
$w_{3}: m_{3} m_{1} m_{2}$	cse 421, Lecture 1	
$1 / 3 / 2024$		

$\left.\begin{array}{|c|c|}\hline \text { Claim: The algorithm stops in at } \\ \text { most } n^{2} \text { steps }\end{array}\right]$

The resulting matching is stable

$$
\begin{aligned}
& \text { Suppose } \\
& \qquad\left(m_{1}, w_{1}\right) \in M,\left(m_{2}, w_{2}\right) \in M \\
& m_{1} \text { prefers } w_{2} \text { to } w_{1}
\end{aligned}
$$

How could this happen?

When the algorithms halts, every w is matched Why?

Hence, the algorithm finds a perfect matching

Result

- Simple, $O\left(\mathrm{n}^{2}\right)$ algorithm to compute a stable matching
- Corollary
- A stable matching always exists

