CSE 421 Introduction to Algorithms

Richard Anderson Winter 2024 Lecture 1

CSE 421, Lecture 1

CSE 421 Course Introduction

- CSE 421, Introductions to Algorithms
 - MWF 1:30-2:20 PM, CSE2 G10
 - Thursday Section
- Instructor
 - Richard Anderson, anderson@cs.washington.edu
 - Office hours:
 - Office hours: TBD, CSE2 344
- Teaching Assistants
 - Raymond Gao, Sophie Robertson, Aman Thukral, Kaiyuan Liu, Albert Weng, Tom Zhaoyang Tian

Announcements

- It's on the course website
 - https://courses.cs.washington.edu/courses/cse421/24wi/
- Homework weekly
 - Due Wednesdays
 - HW 1, Due Wednesday, January 10, 2024.
 - It's on the website
- Homework is to be submitted electronically

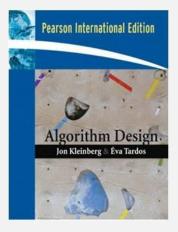
 Due at 11:59 pm, Fridays. Five late days.
- Edstem Discussion Board
- Panopto Videos

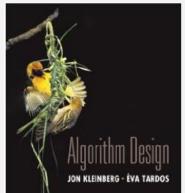
Textbook

- Algorithm Design
- Jon Kleinberg, Eva Tardos

 Only one edition
- Read Chapters 1 & 2
- Expected coverage:
 Chapter 1 through 7
- Book available at:
 - UW Bookstore (\$197.50/\$79.99)
 - Ebay (\$11.27 to \$192.70)
 - Amazon (\$156.95/\$28.76)
 - Electronic (\$10.99 per month)

– PDF





Course Mechanics

- Homework
 - Due Wednesdays
 - Mix of written problems and programming
 - Target: 1-week turnaround on grading
- Exams
 - Midterm, Friday, February 9
 - Final, Monday, March 11, 2:30-4:20 PM
 - <u>Approximate grade weighting:</u>
 - HW: 50, MT: 15, Final: 35
- Course web
 - Slides, Handouts, Discussion Board
- Canvas
 - Panopto videos
- Section on Thursdays
 - Recent addition for CSE421

All of Computer Science is the Study of Algorithms

How to study algorithms

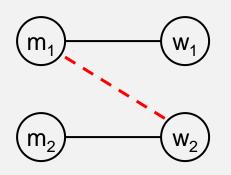
- Zoology
- Mine is faster than yours is
- Algorithmic ideas
 - Where algorithms apply
 - What makes an algorithm work
 - Algorithmic thinking
- Algorithm practice

Introductory Problem: Stable Matching

- Setting:
 - Assign TAs to Instructors
 - Avoid having TAs and Instructors wanting changes
 - E.g., Prof A. would rather have student X than her current TA, and student X would rather work for Prof A. than his current instructor.

Formal notions

- Perfect matching
- Ranked preference lists
- Stability



Example (1 of 3)

Example (2 of 3)

 $\bigcirc W_1$

 $\bigcirc W_2$

Example (3 of 3)

Formal Problem

- Input
 - Preference lists for $m_1, m_2, ..., m_n$
 - Preference lists for $w_1, w_2, ..., w_n$
- Output
 - Perfect matching M satisfying stability property:

If (m', w') ∈ M and (m'', w'') ∈ M then (m' prefers w' to w'') or (w'' prefers m'' to m')

Idea for an Algorithm

m proposes to w

If w is unmatched, w accepts

If w is matched to m₂

If w prefers m to m_2 w accepts m, dumping m_2

If w prefers m_2 to m, w rejects m

Unmatched m proposes to the highest w on its preference list that it has not already proposed to

Algorithm

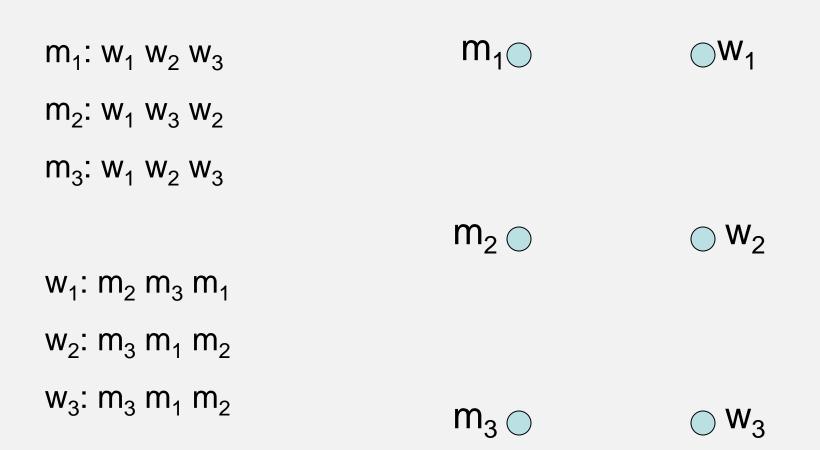
Initially all m in M and w in W are free While there is a free m

w highest on m's list that m has not proposed to if w is free, then match (m, w)

else

suppose (m_2, w) is matched if w prefers m to m_2 unmatch (m_2, w) match (m, w)

Example



Does this work?

- Does it terminate?
- Is the result a stable matching?

- Begin by identifying invariants and measures of progress
 - m's proposals get worse (have higher m-rank)
 - Once w is matched, w stays matched
 - w's partners get better (have lower w-rank)

Claim: If an m reaches the end of its list, then all the w's are matched

Claim: The algorithm stops in at most n² steps

When the algorithms halts, every w is matched

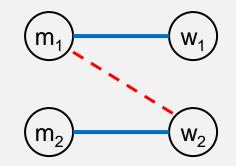
Why?

Hence, the algorithm finds a perfect matching

The resulting matching is stable

Suppose

 $(m_1, w_1) \in M, (m_2, w_2) \in M$ m₁ prefers w₂ to w₁



How could this happen?

Result

- Simple, O(n²) algorithm to compute a stable matching
- Corollary
 - A stable matching always exists