CSE 421 Course Introduction

- CSE 421, Introductions to Algorithms
 - MWF 1:30-2:20 PM, CSE2 G10
 - Thursday Section

- Instructor
 - Richard Anderson, anderson@cs.washington.edu
 - Office hours:
 - Office hours: TBD, CSE2 344

- Teaching Assistants
 - Raymond Gao, Sophie Robertson, Aman Thukral, Kaiyuan Liu, Albert Weng, Tom Zhaoyang Tian
Announcements

• It’s on the course website
 – https://courses.cs.washington.edu/courses/cse421/24wi/

• Homework weekly
 – Due Wednesdays
 – HW 1, Due Wednesday, January 10, 2024.
 – It’s on the website

• Homework is to be submitted electronically
 – Due at 11:59 pm, Fridays. Five late days.

• Edstem Discussion Board
• Panopto Videos
Textbook

- Algorithm Design
- Jon Kleinberg, Eva Tardos
 - Only one edition
- Read Chapters 1 & 2
- Expected coverage:
 - Chapter 1 through 7
- Book available at:
 - UW Bookstore ($197.50/$79.99)
 - Ebay ($11.27 to $192.70)
 - Amazon ($156.95/$28.76)
 - Electronic ($10.99 per month)
 - PDF
Course Mechanics

• Homework
 – Due Wednesdays
 – Mix of written problems and programming
 – Target: 1-week turnaround on grading

• Exams
 – Midterm, Friday, February 9
 – Final, Monday, March 11, 2:30-4:20 PM
 – Approximate grade weighting:
 • HW: 50, MT: 15, Final: 35

• Course web
 – Slides, Handouts, Discussion Board

• Canvas
 – Panopto videos

• Section on Thursdays
 – Recent addition for CSE421
All of Computer Science is the Study of Algorithms
How to study algorithms

- Zoology
- Mine is faster than yours is
- Algorithmic ideas
 - Where algorithms apply
 - What makes an algorithm work
 - Algorithmic thinking
- Algorithm practice
Introductory Problem: Stable Matching

- Setting:
 - Assign TAs to Instructors
 - Avoid having TAs and Instructors wanting changes
 - E.g., Prof A. would rather have student X than her current TA, and student X would rather work for Prof A. than his current instructor.
Formal notions

- Perfect matching
- Ranked preference lists
- Stability

\[m_1 \rightarrow w_1 \]
\[m_2 \rightarrow w_2 \]
Example (1 of 3)

\[m_1 : w_1 \ w_2 \]
\[m_2 : w_2 \ w_1 \]
\[w_1 : m_1 \ m_2 \]
\[w_2 : m_2 \ m_1 \]
Example (2 of 3)

$\mathbf{m}_1 : \mathbf{w}_1 \mathbf{w}_2$

$\mathbf{m}_2 : \mathbf{w}_1 \mathbf{w}_2$

$\mathbf{w}_1 : \mathbf{m}_1 \mathbf{m}_2$

$\mathbf{w}_2 : \mathbf{m}_1 \mathbf{m}_2$
Example (3 of 3)

\[m_1 : w_1 \ w_2 \]
\[m_2 : w_2 \ w_1 \]
\[w_1 : m_2 \ m_1 \]
\[w_2 : m_1 \ m_2 \]
Formal Problem

• Input
 – Preference lists for m_1, m_2, \ldots, m_n
 – Preference lists for w_1, w_2, \ldots, w_n

• Output
 – Perfect matching M satisfying stability property:

 If $(m', w') \in M$ and $(m'', w'') \in M$ then
 $(m' \text{ prefers } w' \text{ to } w'') \text{ or } (w'' \text{ prefers } m'' \text{ to } m')$
Idea for an Algorithm

m proposes to w

If w is unmatched, w accepts
If w is matched to \(m_2 \)
 If w prefers m to \(m_2 \), w accepts m, dumping \(m_2 \)
 If w prefers \(m_2 \) to m, w rejects m

Unmatched m proposes to the highest w on its preference list that it has not already proposed to
Algorithm

Initially all m in M and w in W are free
While there is a free m
 w highest on m’s list that m has not proposed to
 if w is free, then match (m, w)
 else
 suppose (m_2, w) is matched
 if w prefers m to m_2
 unmatch (m_2, w)
 match (m, w)
Example

\[\begin{align*}
 m_1 &: w_1 \ w_2 \ w_3 \\
 m_2 &: w_1 \ w_3 \ w_2 \\
 m_3 &: w_1 \ w_2 \ w_3 \\
\end{align*}\]

\[\begin{align*}
 w_1 &: m_2 \ m_3 \ m_1 \\
 w_2 &: m_3 \ m_1 \ m_2 \\
 w_3 &: m_3 \ m_1 \ m_2 \\
\end{align*}\]
Does this work?

- Does it terminate?
- Is the result a stable matching?

- Begin by identifying invariants and measures of progress
 - m’s proposals get worse (have higher m-rank)
 - Once w is matched, w stays matched
 - w’s partners get better (have lower w-rank)
Claim: If an m reaches the end of its list, then all the w’s are matched.
Claim: The algorithm stops in at most n^2 steps
When the algorithms halts, every \(w \) is matched. Why?

Hence, the algorithm finds a perfect matching.
The resulting matching is stable

Suppose

\[(m_1, w_1) \in M, (m_2, w_2) \in M\]

\[m_1\] prefers \(w_2\) to \(w_1\)

How could this happen?
Result

- Simple, $O(n^2)$ algorithm to compute a stable matching
- Corollary
 - A stable matching always exists