Turnin instructions: Electronic submission on gradescope using the CSE 421 gradescope site. Submit the assignment as a PDF, with separate pages for different numbered problems. Problems consisting of multiple parts (e.g., $2 \mathrm{a}, 2 \mathrm{~b}$) can be submitted on the same page.

Problem 1 (10 points):

Answer the following questions with "yes", "no", or "unknown, as this would resolve the P vs. NP question." Give a brief explanation of your answer.

Define the decision version of the Interval Scheduling Problem as follows: Given a collection of intervals on a time-line, and a bound k, does the collection contain a subset of nonoverlapping intervals of size at least k ?
a) Question: Is it the case that Interval Scheduling \leq_{P} Vertex Cover?
b) Question: Is it the case that Independent Set \leq_{P} Interval Scheduling?

Problem 2 (10 points):

(Kleinberg-Tardos, Page 507, Problem 7). Since the 3-Dimensional Matching Problem is NPcomplete, it is natural to expect that the corresponding 4-Dimensional Matching Problem is at least as hard. Let us define 4-Dimensional Matching as follows. Given sets W, X, Y, and Z, each of size n, and a collection C of ordered 4-tuples of the form $\left(w_{i}, x_{j}, y_{k}, z_{l}\right)$, do there exist $n 4$-tuples from C so that no two have an element in common?

Prove that 4-Dimensional Matching is NP-Complete.

Problem 3 (10 points):

(Kleinberg-Tardos, Page 506, Problem 5). Consider a set $A=\left\{a_{1}, \ldots, a_{n}\right\}$ and a collection $B_{1}, B_{2}, \ldots, B_{m}$ of subsets of A (i.e., $B_{i} \subseteq A$ for each i).

We say that a set $H \subseteq A$ is a hitting set for the collection $B_{1}, B_{2}, \ldots, B_{m}$ if H contains at least one element from each B_{i} - that is, if $H \cap B_{i}$ is not empty for each i (so H "hits" all the sets B_{i}).

We now define the Hitting Set Problem as follows. We are given a set $A=\left\{a_{1}, \ldots, a_{n}\right\}$, a collection $B_{1}, B_{2}, \ldots, B_{m}$ of subsets of A, and a number k. We are asked: Is there a hitting set $H \subseteq A$ for $B_{1}, B_{2}, \ldots, B_{m}$ so that the size of H is at most k ?

Prove that Hitting Set is NP-complete.

Problem 4 (10 points):

(Kleinberg-Tardos, Page 506, Problem 6). Consider an instance of the Satisfiability Problem, specified by clauses C_{1}, \ldots, C_{k} over a set of Boolean variables x_{1}, \ldots, x_{n}. We say that the instance is monotone if each term in each clause consists of a nonnegated variable; that is, each term is equal to x_{i}, for some i, rather than $\overline{x_{i}}$. Monotone instances of Satisfiability are very easy to solve: They are always satisfiable, by setting each variable equal to 1 .

For example, suppose we have the three clauses

$$
\left(x_{1} \vee x_{2}\right),\left(x_{1} \vee x_{3}\right),\left(x_{2} \vee x_{3}\right)
$$

This is monotone, and indeed the assignment that sets all three variables to 1 satisfies all the clauses. But we can observe that this is not the only satisfying assignment; we conld also have set x_{1} and x_{2} to 1 , and x_{3} to 0 . Indeed, for any monotone instance, it is natural to ask how few variables we need to set to 1 in order to satisfy it.

Given a monotone instance of Satisfiability, together with a number k, the problem of Monotone Satisfiability with Few True Variables asks: Is there a satisfying assignment for the instance in which at most k variables are set to 1 ? Prove this problem is NP-complete.

Problem 5 (10 Points):

(Kleinberg-Tardos, Page 513, Problem 17). You are given a directed graph $G=(V, E)$ with weights w_{e} on its edges $e \in E$. The weights can be negative or positive. The Zero-Weight-Cycle Problem is to decide if there is a simple cycle in G so that the sum of the edge weights on this cycle is exactly 0. Prove that the Zero-Weight-Cycle problem is NP-Complete. (Hint: Hamiltonian PATH)

