Homework 2, Due Wednesday, January 17, 11:59 pm

Turnin instructions: Electronic submission on gradescope using the CSE 421 gradescope site. Submit the assignment as a PDF, with separate pages for different numbered problems. Problems consisting of multiple parts (e.g., $2 \mathrm{a}, 2 \mathrm{~b}$) can be submitted on the same page.

Problem 1 (10 points):

Order the following functions in increasing order by their growth rate:

1. n^{3}
2. $(\log n)^{\log n}$
3. $2^{\sqrt{\log n}}$
4. $2^{n / 10}$
5. $(\log n)^{3}$

Explain how you determined the ordering.

Problem 2 (10 points):

We say that $T(n)$ is $O(f(n))$ if there exist c and n_{0} such that for all $n>n_{0}, T(n)<c f(n)$. Use this definition for parts a and b .
a) Prove that $4 n^{2}+3 n \log n+6 n+20 \log ^{2} n+11$ is $O\left(n^{2}\right)$. (You may use, without proof, the fact that $\log n<n$ for $n \geq 1$.)
b) Suppose that $f(n)$ is $O(r(n))$ and $g(n)$ is $O(s(n))$. Let $h(n)=f(n) g(n)$ and $t(n)=r(n) s(n)$. Prove that $h(n)$ is $O(t(n))$.

Problem 3 (10 points):

Give an algorithm for efficiently computing the number of shortest paths in an undirected graph between a a pair of vertices. Suppose that you have an undirected graph $G=(V, E)$ and a pair of vertices v and w. Your algorithm should compute the number of shortest $v-w$ paths in G. Since this graph is unweighted, the length of a path is defined to be the number of edges in the path.
Your algorithm should have run time $O(n+m)$ for a graph of n vertices and m edges. If there is no path from v to w, your algorithm should report an error.

You should explain why your algorithm is correct and justify the run time of the algorithm.

Problem 4 (10 points):

The diameter of an undirected graph is the maximum distance between any pair of vertices. If a graph is not connected, its diameter is infinite. Let G be an n node undirected graph, where n is even. Suppose that every vertex has degree at least $n / 2$. Prove that G has diameter at most 2 .

Problem 5 (10 points) Edge Coloring:

Given an undirected graph $G=(V, E)$ with n vertices such that the degree of every vertex of G is at most k. Prove that we can color the edges of G with at most $2 k-1$ colors such that any pair of edges e and f which are incident to the same vertex have distinct colors.

You should prove this result by giving an algorithm to color the edges of G with at most $2 k-1$ colors such that any pair of edges e and f which are incident to the same vertex have distinct colors. You will also need to justify that your algorithm finds a valid edge coloring with at most $2 k-1$ for graphs of degree at most k. You should describe your algorithm using pseudo-code, which allows you to use a mix of English language statements and control structures.

