University of Washington January 4, 2024
Department of Computer Science and Engineering
CSE 421, Winter 2024

Homework 1, Due Wednesday, January 10, 2024

Turnin instructions: Electronic submission on gradescope using the CSE 421 gradescope site. Sub-
mit the assignment as a PDF, with separate pages for different numbered problems. Problems
consisting of multiple parts (e.g., 2a, 2b) can be submitted on the same page.

Problem 1 (10 points):

Let I = (M, W) be an instance of the stable matching problem. Suppose that the preference lists
of all m € M are identical, so without loss of generality, m; has the preference list [wq, wa,. .., wy].
Prove that there is a unique solution to this instance. Describe what the solution looks like, and why
it is the only stable solution. (Note: showing that the solution is the one found by the Gale-Shapely
algorithm is not sufficient, as there could be other solutions.)

Problem 2 (10 points):

(Adapted from text, page 28, exercise 8.) For this problem, we explore the issue of truthfulness in
the Gale-Shapley algorithm for Stable Matching. Show that a participant can improve its outcome
by lying about its preferences. Consider w € W. Suppose w prefers m to m/, but m and m’ are
low on w’s preference list. Show that it is possible that by switching the order of m and m’ on w’s
preference list, w achieves a better outcome, e.g., is matched with an m” higher on the preference
list than the one if the actual order was used.

Problem 3 (10 points):

(Adapted from text, page 23, exercise 4.) One of the famous applications of the Stable-Matching
algorithm is for assigning medical residents to hospitals.

For resident matching, each potential resident submits a ranked list of hospitals they want to
work at, and each hospital creates a ranked list of potential residents. There are a few differences
between this scenario and the Stable-Matching scenario. We will assume there are n residents and
m hospitals. First, hospitals can request more than one resident: we will let k; be the number of
residents h; requests. We will assume that the number of potential residents is greater than the
total number of hospital requests, so some potential residents will not be assigned to a hospital.
The resident matching needs to find an assignment of residents to hospitals with no instabilities.
To account for residents not being assigned, we have two types of instabilities:

e Type one: There are students s and s’, and a hospital h, such that: s is assigned to h, s’ is
assigned to no hospital, and h prefers s’ to s.

e Type two: There are students s and s’ and hospitals h and h’ such that s is assigned to h, s’
is assigned to A/, h prefers s’ to s, and s’ prefers h to h'.



a) Show how to adapted the Gale-Shapley stable matching algorithm to this case. In particular,
show how to adapt the algorithm when hospitals request multiple residents, and there is a
surplus of residents so that some of them will be unmatched.

b) How would you adapt the algorithm so that hospitals can specify some residents as being
unacceptable (so that they will never be assigned to the hospital, possibly not giving a full
assignment to the hospital.

Programming Problem 4 (10 points):

Implement the stable matching algorithm.

You are free to write in any programming language you like (but Java is recommended). The
quality of your algorithm may be graded (but you can use the one in the book), but the actual
quality of the code will not be graded. The expectation is that you write the algorithmic code
yourself - but you can use other code or libraries for supporting operations. You may use a library
to generate random permutations (although this can be done as a four-line algorithm.) Submit
your code as a PDF.

Make sure that you test your algorithm on small instance sizes, where you are able to check results
by hand. A collection of sample instances are provided.

Run your algorithm on the following instance of size n = 4. (You can just hard code this as
an input into your program.) The preferences for M’s are given by the following matrix (where the
i-th row in the ordered list of preferences for m;.

O O O N
T
N DN W W
W w N o

and the preferences for the W’s are given by the matrix:

0 21 3
2 0 31
3210
2310

Give the resulting matching that is found, along with the list of proposals performed by the algo-
rithm.

Programming Problem 5 (10 points) :

Write an input generator which creates completely random preference lists, so that each M has a
random permutation of the W’s for preference, and vice-versa. The purpose of this problem is to
explore how “good” the algorithm is with respect to M and W. (There is an interesting meta-point
relating to algorithm fairness that can be made with this problem.)



We define “goodness” of a match as the position in the preference list. We will number posi-
tions from one (not zero as is standard for array indexing.) Note that lower numbers are good. To
be precise, suppose m is matched with w. The mRank of m (written mRank(m)) is the position
of w in m’s preference list, and the wRank of w is the position of m in w’s preference list. We
define the M Rank of a matching to be the sum of all of the mRank(m) and the W Rank of w to
be the sum of all of the wRank(w). If there are n M’s (and n W’s), we define the M Goodness to
be M Rank/n and the WGoodness to be W Rank /n.

As the size of the problem increases - how does the goodness change for M and W? Submit a
short write up about how the goodness varies with the input size based on your experiments. Is
the result better for the M’s or W’s? You will probably need to run your algorithm on inputs with
n at least 1,000 to get interesting results.



