
University of Washington October 27, 2023
Department of Computer Science and Engineering
CSE 417, Winter 2020

Old midterm questions with solutions

Problem 1. Stable Marriage (10 points):

Show that the Gale-Shipley Stable Marriage algorithm can take Θ(n2) steps with appropriate choice
of preference lists. Give preference lists and an ordering of the proposals that require Θ(n2) steps.
Explain why your example achieves the bound.

Hint: This can be done with all of the M ’s having the same preference lists, and all of the W ’s
having the same preference lists.

Solution :

Give the M ’s the preference list {w1, w2, . . . , wn}, and the W ’s the preference list {m1,m2, . . . ,mn}.
During the i-th round, each unmatched M proposes to the i-th in its list. Exactly one new M is
matched each round, so there are n− i + 1 in round i. The total number of proposals is

n∑
i=1

(n− i + 1) =
n∑

j=1

j =
n(n + 1)

2
.

The order of the M ’s and W ’s preference lists don’t matter in this argument - it just depends on
on the lists being all the same.

Problem 2. Big Oh (10 points):

Let q, r, and s be positive constants. Prove that qn2 + rn + s is O(n2) using the formal definition
of O(·).

Big O(·) definition: f(n) is O(g(n)) if there exists c > 0 and n0 ≥ 0 such that for all n ≥ n0,
f(n) ≤ cg(n).

Solution :

Let c = q + r + s and n0 = 1. For n ≥ 1 we have:

qn2 + rn + s ≤ qn2 + rn2 + sn2 = (q + r + s)n2 = cn2.

Problem 3. True or False (30 points):

Determine if the following statements are true or false. Provide a short justification for each answer.

a) True or false: If G is a directed graph on n vertices where every vertex has out degree at
least two, then G has a cycle. Justify your answer.

Solution :

True. Choose any vertex, and follow a path until there is a repeated vertex. Since the out
degree of every vertex is at least one, there is always an edge to pick to lead to another vertex.
A repeated vertex must always be found within n steps, hence, there is a cycle.

b) True or false: If G is a directed graph on n vertices with at least 2n edges, then G has a
cycle. Justify your answer.

Solution :

False. The complete bipartite directed graph (or Kn,n) for n ≥ 4. For n = 4, the graph has
8 vertices and 16 edges.

?

@
@
@
@
@@R

HHH
HHH

HHH
HHj

PPPPPPPPPPPPPPPPPq?

�
�

�
�

��	

@
@
@
@
@@R

HHH
HHH

HHH
HHj?

�
�

�
�

��	

@
@
@
@
@@R

���
���

���
��� ?

�
�

�
�

��	

���
���

���
���

�����������������)• • • •

• • • •

c) True or false: If G is a directed graph on n vertices, with distinct vertices r and s, where
there is a path from r to every vertex in the graph, and there is a path from s to every vertex
in the graph, then there is a cycle in the graph. Justify your answer.

Solution :

True.

The path from r to s followed by the path from s to r is a cycle.

d) True or false: If G is an undirected graph with edge weights, and edge e has weight strictly
greater than any other edge in the graph, then e cannot be in a minimum spanning tree for
G. Justify your answer.

Solution :

False. A trivial counter example is a graph with a single edge:

• •1

A non-trivial example is where the most expensive edge is the only connection between two
components:

•��
�
��
�

HHH
HHH

•

• •2

•HH
H
HH

H

���
���

•1 1

1 1

1 1

e) True or false: If G is an undirected graph with edge weights, and edge e has weight strictly
less than any other edge in the graph, then e must be in every minimum spanning tree for
G. Justify your answer.

Solution :

True. This follows from the edge inclusion lemma. Suppose e = (u, v) has cost less than
any other edge. We use {u} in the edge inclusion lemma as (u, v) is the minimum cost edge
between {u} and V − {u}.

f) True or false: If G is a undirected graph on n vertices with more than n/2 connected com-
ponents, then at least one of the connected components is an isolated vertex. Justify your
answer.

Solution :

True. Suppose there are no isolated components, so each component has size at least 2.
However, if we have more than n

2 components, we have more than 2 · n2 = n vertices.

Problem 4. Minimum Weight Branching (10 points):

A branching is a rooted subtree in a directed graph where there is a path from the root r to every
vertex in the graph. The minimum branching problem is: given a directed graph with weights on
the edges and a specified vertex r, find a branching of minimum weight rooted at r.

Show that Dijkstra’s shortest paths algorithm does not solve this problem. Specifically, give a graph
where the shortest paths found by Dijkstra’s algorithm do not form a minimum weight branching.

Solution :

• • •
r r r

�
�

�
�

��	

�
�

�
�
��	

�
�

�
�
��	

1 1 1

? ?

2 2

• • •

? ? ?

1 1 1

• • •
@
@
@
@
@@R

@
@
@
@
@@R

1 1

• • •
Graph Branching Shortest Paths

(Note: This problem should have specified that the all edges have non-negative costs to avoid
solutions with a malfunctioning Dijkstra’s algorithm.)

Problem 5. One-Two Knapsack Problem (20 points):

The Knapsack Problem is: Given a collection of items I = {i1, . . . , in} and an integer K where each
item ij has a weight wj and a value vj , find a subset of the items with weight at most K which
maximizes the total value of the set. More formally, we want to find a subset S ⊆ I such that∑

ik∈S wk ≤ K and
∑

ik∈S vk is as large as possible.

We define the density of dj of item ij to be dj = vj/wj . A natural greedy algorithm for the
knapsack problem is to consider the items in order of decreasing density, and place each item into
the knapsack if there is still sufficient space for the item.

For this problem, we restrict the weights of the items to be either 1 or 2. For convenience, we
assume the capacity K of the knapsack is an even number.

a) Given an example that shows that the greedy algorithm based on sorting items by density
does not necessarily give an optimal solution, even if the weights are restricted to 1 and 2.

Solution L:

et K = 2, and we will have items {i1, i2, i3}, where i1 has weight 1 and value 2, i2 has weight
1 and value 0, and i3 has weight to and value 3.

The greedy algorithm finds the solution {i1, i2} with value 2, while the optimal solution is
{i3} with value 3.

b) Describe an efficient algorithm that finds an optimal solution to the knapsack problem when
the weights are restricted to 1 and 2.

Solution :

Step 1. Sort the items of size 1 by value and combine adjacent items into new items of weight
2. (If there is a left over item, make it an item of weight 2.)

Step 2. Select the largest K
2 items of weight 2 (including both the original items of weight 2,

and the combined items from Step 1.

c) Provide a justification that your algorithm is correct.

Solution :

For convenience, we assume the values are distinct. This assumption can be removed by
sorting equal value items in a consistent manner, such as using the item number as a secondary
key.

The solution S constructed by the algorithm has the following properties:

1. Every item of weight 1 in S has greater value than than every item of weight 1 not in S.

2. Every item of weight 2 in S has greater value than than every item of weight 2 not in S.

3. Every item of weight 2 in S has greater value than than every pair of items of weight 1
not in S.

4. Every pair of items of weight 1 in S has greater value than item of weight 2 not in S.

Let T be a set of items different from S. Suppose x ∈ T and x 6∈ S.

Case 1: Weight of x = 1 and there is a y ∈ S, y 6∈ T with weight 1. In this case, y can be
added to T and x removed to show T is not optimal.

Case 2: Weight of x = 1 and there is no y ∈ S, y 6∈ T with weight 1. In this case, there is
another z ∈ T of weight 1 with z 6∈ S. An item of weight 2 can be added to T and x and z
removed to show T is not optimal.

Case 3: Weight of x = 2. In this case either an item of weight 2, or two items of weight 1 can
be added to T and x removed to show T is not optimal.

This shows that T is not optimal.

Problem 6 (10 points):

Consider the stable matching problem.

a) Show that it is possible to have a last-choice match: There exists an instance of the problem
with a stable matching M that has m matched with w, where w is m’s last choice, and m is
w’s last choice.

Answer: An example of a problem instance is a 2× 2 example with:

m1 : w1, w2 w1 : m1,m2

m2 : w1, w2 w2 : m1,m2

Since m1 and w1 are each other’s first choice, they are matched, leaving m2 and w2 to be
matched.

Another example is the trivial example, with just m and w. In this case, m and w are
matched, and are their last choices (as well as their first choices).

b) Is it possible for a stable matching to have two last-choice matches: could a stable matching
M have m1 matched with w1 where m1 is w1’s last choice and w1 is m1’s last choice, and
m2 matched with w2 where m2 is w2’s last choice and w2 is m2’s last choice? Justify your
answer.

Answer: No. If there are two last choice matches (m1, w1) and (m2, w2), then (m1, w2) is
an instability, since m1 preferes w2 to w1 and w2 prefers m1 to m2.

Problem 7 (10 points):

Show that
logn∑
k=0

4k

is O(n2).
Answer:

j∑
k=0

xk =
xj+1 − 1

x− 1
,

so
logn∑
k=0

4k =
4logn+1 − 1

4− 1
=

4n2 − 1

3

which is O(n2).

Problem 8 (10 points):

Let G = (V,E) be an undirected graph.

a) True or false: If G is a tree, then G is bipartite. Justify your answer.

True. If we label the vertices based upon their distance from the root, we observe that all
edges go between even vertices and odd vertices.

b) True or false: If G is not bipartite, then the shortest cycle in G has odd length. Justify your
answer.

False. A counter example is a graph made up of a cycle of length 4 connected to a cycle of
length 5.

•

•

•

•

•

•
•

�
�

@
@

Problem 9 (10 points):

Consider the following undirected graph G.

•

•�
�
�
�
5

S
S
S
S
S
S
SS

16

19

•

•

•

•

• •

•

•

�
�
�
�

7

18 C
C
C
C
C
C
CC

15

12
4

 14

�
�
�
�
��

9

@
@
@
@
@@

17

@
@
@
@
@@

8

�
�
�
�
��

6

���
���

��10

a b

c
d

e

f

g

h
i

j

a) Use the Edge Inclusion Lemma to argue that the edge (a, b) is in every Minimum Spanning
Tree of G.

Answer: (a, b) is the cheapest cost edge between {a, c, d, f, h} and {b, e, i, j, g}.

b) Use the Edge Exclusion Lemma to argue that the edge (a, i) is never in a Minimum Spanning
Tree of G.

Answer: (a, i) is the most expensive edge on the cycle {a, i, j, g, e, b}.

Problem 10 (10 points):

The knapsack problem is: Given a collection of items I = {i1, . . . , in} and an integer K where each
item ij has a weight wj and a value vj find a subset of the items which has weight at most K and
maximizes the total value in the set. More formally, we want to find a subset S ⊆ I such that∑

ik∈S wk ≤ K and
∑

ik∈S vk is as large as possible.
Suppose that the items are sorted in decreasing order of value, so that vi ≥ vi+1. A simple greedy
algorithm for the problem is:

CurrWeight := 0;
Sack := ∅;
for j := 1 to n
if CurrWeight + wj ≤ K then
Sack := Sack ∪ {ij}
CurrWeight := CurrWeight + wj

a) Show that the greedy algorithm does not necessarily find the maximum value collection of
items that can be placed in the knapsack.

Answer: The following counter example shows that the greedy algorithm does not find the
optimal soultion. Let K = 2 and suppose there are three jobs {i1, i2, i3} with v1 = 3, w1 = 2,
v2 = 2, w2 = 1, and v3 = 2, w3 = 1. The greedy algorithm selects i1, while the optimal
solution is i2 and i3.

b) Prove that if all weights are the same, then the greedy algorithm finds the maximum value
set. (For convenience, you may assume that each item has weight 1).

Proof: If there are fewer than K items, then the greedy algorithm selects all items, so
assume there are at least K items. The greedy algorithm constructs the solution {i1, . . . , iK}.
Let Opt = {ij1 , . . . , ijK} (where jr < jr+1). We must have r ≤ jr, so vr ≤ vjr for all r, so the
value of the set constructed by the greedy algorithm is no more the the optimal.

Problem 11 (10 points):

Give solutions to the following recurrences. Justify your answers.

a)

T (n) =

{
2T (n3) + n if n > 1
1 if n ≤ 1

Answer: Unrolling the recurrence, we get:

T (n) = 2T
(n

3

)
+ n = 4T

(n
9

)
+

2n

3
+ n = 8T

(n

27

)
+

4n

9
+

2n

3
+ n,

which gives us:

T (n) =

log3 n∑
i=0

(
2

3

)i

n ≤ 3n,

so the solution is O(n).

b)

T (n) =

{
8T (n2) + n3 if n > 1
0 if n ≤ 1

Answer: Unrolling the recurrence, we get:

T (n) = 8T
(n

2

)
+ n3 = 64T

(n
4

)
+ n3 + n3 = 512T

(n
8

)
+ n3 + n3 + n3.

We observe that each level of the recurrence yields the n3, and the depth of the recurrence is log 2n,
so the answer is O(n3 log n).

Problem 12 (10 points):

A k-wise merge takes as input k sorted arrays, and constructs a single sorted array containing all
of the elements of the input arrays.

a) Describe an efficient divide and conquer algorithm MultiMerge(k,A1, . . . , Ak) which computes
a k-wise merge of its input arrays.

Answer: We give a recursive algorithm, which makes use of a routine Merge(A1, A2) which
merges a pair of sorted arrays, and returns the result. We assume that k is a power of two,
and that k ≥ 2.

MultiMerge(k,A1, . . . , Ak)
if k = 2
return Merge(A1, A2);

else
B1 := MultiMerge(k2 , A1, . . . , A k

2
);

B1 := MultiMerge(k2 , A k
2
+1, . . . , Ak);

return Merge(B1, B2);

b) What is the run time of your algorithm with input of k arrays of length n. Justify your
answer.

The run time of the algorithm is O(kn log k). One way to see this is to write the run time as a
recurrence. Let cn be a bound on the cost of merging two arrays of length n. The recurrence for
the run time is T (k) = 2T

(
k
2

)
+ ckn, so the solution is ckn log k.

