Department of Computer Science and Engineering
CSE 421, Autumn 2019

Midterm Exam, Wednesday, October 30, 2019

NAME: \qquad

Instructions:

- Closed book, closed notes, no calculators
- Time limit: 50 minutes
- Answer the problems on the exam paper.
- If you need extra space use the back of a page
- Problems are not of equal difficulty, if you get stuck on a problem, move on.

1	$/ 15$
2	$/ 10$
3	$/ 10$
4	$/ 10$
5	$/ 5$
6	$/ 15$
Total	$/ 65$

Problem 1 Graph Theory (15 points):

a) True or false: Let $G=(V, E)$ be an undirected graph. If G is a tree, then G is bipartite. Justify your answer.
b) True or false: Let $G=(V, E)$ be an undirected graph with n vertices and m edges. If $m>\frac{n(n-1)}{2}-(n-1)$ then the graph G must be connected. (By definition, an undirected graph has no parallel edges and no self loops.) Justify your answer.
c) True or false: Let $G=(V, E)$ be a directed graph with n vertices. If every vertex of G has out degree at least one, then G has a cycle. Justify your answer.

Problem 2 Space Aliens (10 points):

There is a new alien language which uses the Latin alphabet. However, the order among letters is unknown to you. You receive a list of sequences of letters in alphabetical order and you want to construct a total order consistent with the sequences.

For example, given the following sequences: (a,d,e), (a, c, b), (d, g, e), (d,b,e), your algorithm could return (a, d, c, g, b, e). If there are multiple valid order of letters, simply return any one of them.

Give an algorithm with runs in $O(n+m)$ time, where n is the number of letters, and m is the sum of the lengths of the sequences.

Problem 3 Minimum Spanning Trees (10 points):

Let $G=(V, E)$ be an undirected graph with edge weights. We will assume that the edge weights are distinct.
a) What is the edge inclusion lemma (for Minimum Spanning Trees)?
b) Let u be a vertex, and suppose that $e=(u, v)$ is the minimum cost edge adjacent to u. Prove that the edge e is in the minimum spanning tree for G.

Problem 4 Interval Scheduling (10 points):

The input for an interval scheduling problem is a set of intervals $I=\left\{i_{1}, \ldots, i_{n}\right\}$ where i_{k} has start time s_{k}, and finish time f_{k}. The problem is to find a set of non-overlapping intervals that satisfies a given criteria.
a) Suppose that you want to maximize the total length of the selected intervals. True or false: The greedy algorithm based on selecting intervals in order of decreasing length finds an optimal solution. Justify your answer.
b) The set of intervals $I^{\prime}=\left\{i_{1}^{\prime}, \ldots, i_{n}^{\prime}\right\}$ is said to be a shrinking of the intervals $I^{\prime \prime}=\left\{i_{1}^{\prime \prime}, \ldots, i_{n}^{\prime \prime}\right\}$ if each interval in I^{\prime} is contained in the corresponding interval of $I^{\prime \prime}$, in other words, for $1 \leq k \leq n, s_{k}^{\prime \prime} \leq s_{k}^{\prime} \leq f_{k}^{\prime} \leq f_{k}^{\prime \prime}$. True or false: If I^{\prime} is a shrinking of $I^{\prime \prime}$, then the maximum number of non-overlapping intervals in I^{\prime} is at least as great as the maximum number of non-overlapping intervals in $I^{\prime \prime}$. Justify your answer.

Problem 5 Bottleneck Distance (5 points):

The bottleneck length of a path P is the cost of the maximum edge of P. The bottleneck distance between vertices u and v is the minimum bottleneck distance of a path between u and v. This problem can be solved using a variant of Dijkstra's algorithm.

Simulate Dijkstra's bottleneck path algorithm on the graph above by filling in the table. The entries should contain the preliminary distance values.

Round	Vertex	s	a	b	c	d	e
1							
2							
3							
4							
5							
6							

Problem 6 Recurrences (15 points):

Give solutions to the following recurrences. Justify your answers.
a)

$$
T(n)= \begin{cases}5 T\left(\frac{n}{3}\right)+n & \text { if } n>1 \\ 1 & \text { if } n \leq 1\end{cases}
$$

b)

$$
T(n)= \begin{cases}T\left(\frac{4 n}{5}\right)+n & \text { if } n>1 \\ 1 & \text { if } n \leq 1\end{cases}
$$

c)

$$
T(n)= \begin{cases}16 T\left(\frac{n}{4}\right)+n^{2} & \text { if } n>1 \\ 1 & \text { if } n \leq 1\end{cases}
$$

