NAME: \qquad UW ID: \qquad

Instructions:

- Closed book, closed notes, no calculators
- Time limit: One hour and fifty minutes
- Answer the problems on the exam paper.
- If you need extra space use the back of a page
- Problems are not of equal difficulty, if you get stuck on a problem, move on.
- "Justify your answer" means give a short and convincing explanation. Depending on the situation, justifications can involve counter examples, or cite results established in the text or in lecture.
- The formula for the sum of the geometric series, for

1	$/ 15$
2	$/ 12$
3	$/ 15$
4	$/ 15$
5	$/ 15$
6	$/ 20$
7	$/ 15$
8	$/ 13$
Total	$/ 120$

$$
\sum_{j=0}^{n} r^{j}=\frac{r^{(n+1)}-1}{r-1}=\frac{1-r^{(n+1)}}{1-r}
$$

Notes: For all problems involving graphs, the graph is $G=(V, E)$ with $|V|=n$ and $|E|=m$. You may use common algorithms (e.g., algorithms presented in class) as subroutines without writing them out. You should provide a short justification of why your algorithms work.

Problem 1 (15 points):

a) True or false: For an undirected graph G, if G is a tree, then G is bipartite. Justify your answer.
b) True or false: For a directed graph G with n vertices, if G has at least n edges, then G has a cycle. Justify your answer.
c) True or false: For a directed graph G, if every vertex in G has out degree at least one, then G has a cycle. Justify your answer.

Problem 2 (12 points) Short Answer:

a) What was Steve Cook's role in the development of NP-completeness?
b) Yes, no, or maybe: is Undirected Graph Connectivity NP-Complete? (Undirected Graph Connectivity is: given an undirected graph $G=(V, E)$, determine if there is an undirected path between every pair of vertices.) Justify your answer.
c) What is the run time of the Topological Sort Algorithm.
d) Given a graph G, vertices s and t, and an integer K, is there a polynomial time algorithm to determine if there is a shortest path between vertices s and t that has fewer than K edges?

Problem 3 (15 points) Short Answer:

a) What are the two central ideas involved in Dynamic Programming?
b) How do you determine if a directed graph has a cycle?
c) What is the best case runtime for the stable marriage algorithm for an instance with $|M|=n$ and $|W|=n$, when measured in terms of the number of proposals. Explain.
d) Explain how the Bellman-Ford Algorithm can be applied to currency trading.
e) Give a satisfying assignment to the following boolean formula (we use the notation \bar{x} for $\neg x$ or "not x "):
$\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{3}} \vee \overline{x_{4}}\right) \wedge\left(\overline{x_{1}} \vee x_{3} \vee \overline{x_{4}}\right) \wedge\left(x_{1} \vee x_{2} \vee \overline{x_{4}}\right) \wedge\left(\overline{x_{2}} \vee x_{3} \vee x_{4}\right)$

Problem 4 (15 points) Unit Size Knapsack:

The Knapsack problem is: Given a set of n items $\{1,2, \ldots, n\}$ with non-negative weights w_{i} (for $i=1, \ldots, n)$, and non-negative values v_{i} (for $i=1, \ldots, n$), and a weight bound W, find a set of items $S \subseteq\{1,2, \ldots, n\}$ such that $\sum_{i \in S} w_{i}=W$ that maximizes the value of the items in the set, i.e., that maximizes $\sum_{i \in S} v_{i}$. The Unit Size Knapsack restricts the problem so that all of the weights are one, i.e., $w_{i}=1$ (for $i=1, \ldots, n$).
a) Describe a simple greedy algorithm for the Unit Size Knapsack problem. Your algorithm should not be based on Dynamic Programming, and should have runtime $O(n \log n)$ or better.
b) Argue that your algorithm correctly finds an optimal solution. (You may assume that the values are all distinct.)

Problem 5 (15 points) Recurrences:

Give solutions to the following recurrences. Justify your answers by unrolling the recursion tree.
a)

$$
T(n)= \begin{cases}4 T\left(\frac{n}{2}\right)+n & \text { if } n>1 \\ 1 & \text { if } n=1\end{cases}
$$

b)

$$
T(n)= \begin{cases}4 T\left(\frac{n}{2}\right)+n^{2} & \text { if } n>1 \\ 1 & \text { if } n=1\end{cases}
$$

b)

$$
T(n)= \begin{cases}4 T\left(\frac{n}{2}\right)+n^{3} & \text { if } n>1 \\ 1 & \text { if } n=1\end{cases}
$$

Problem 6 (20 points) Highest Value Longest Common Sequence:

The problem will consider strings over the alphabet $\left\{x_{1}, x_{2}, \ldots, x_{K}\right\}$ where character x_{i} has a non-negative integer value $v_{x_{i}}$. The value of a string $S=s_{1} s_{2} \cdots s_{n}$ is the sum of the character values, i.e., $\operatorname{Val}(S)=\sum_{i=1}^{n} v_{s_{i}}$. The Highest Value Longest Common Sequence (HVLCS) problem is: Given strings $A=a_{1} a_{2} \cdots a_{n}$ and $B=b_{1} b_{2} \cdots b_{m}$, find a sequence $C=c_{1} c_{2} \cdots c_{k}$ such that C is a subsequence of A and B that maximizes $\operatorname{Val}(C)$.
a) Consider strings over $\{a, b, c\}$ with $v_{a}=2, v_{b}=4$, and $v_{c}=5$, determine a HVLCS of the strings $A=a a c b$ and $B=c a a b$ and give the value of the HVLCS.
b) Give a recurrence that is the basis of a dynamic programming algorithm to compute the HVLCS of strings $A=a_{1} a_{2} \cdots a_{n}$ and $B=b_{1} b_{2} \cdots b_{m}$ over the alphabet $\left\{x_{1}, x_{2}, \ldots, x_{K}\right\}$ where character x_{i} has a non-negative integer value $v_{x_{i}}$. You must provide the appropriate base cases, and explain why your recurrence is correct.
c) Give pseudocode of an algorithm to compute the length of the HVLCS of given strings A and B. (You do not need to compute the actual string, just determine its value.) What is the runtime of your algorithm?

Problem 7 (15 points) Knapsack Problem:

The Knapsack problem is: Given a set of n items $\{1,2, \ldots, n\}$ with non-negative weights w_{i} (for $i=1, \ldots, n$), and non-negative values v_{i} (for $i=1, \ldots, n$), a weight bound W, and target value K, determine if there is a set of items $S \subseteq\{1,2, \ldots, n\}$ such that $\sum_{i \in S} w_{i}=W$ and $\sum_{i \in S} v_{i} \geq K$.
a) Show that the Knapsack problem is in NP.
b) Give a polynomial time reduction from Subset-Sum to Knapsack to prove that Knapsack is NP-Complete.
For this problem, the Subset-Sum problem is: Given a set of n items $\{1,2, \ldots, n\}$ with nonnegative weights w_{i} (for $i=1, \ldots, n$) a weight bound W, determine if there is a set of items $S \subseteq\{1,2, \ldots, n\}$ such that $\sum_{i \in S} w_{i}=W$. You may assume that this problem has been shown to be NP-Complete.

Problem 8 (13 points):

Let G be a directed acyclic graph, with a distinguished node s. Describe an $O(n+m)$ algorithm to compute, for each vertex v, the number of paths from s to v.

