P1) Write the following LP in Standard Form:

\[
\begin{align*}
\text{min} & \quad 2x_1 - x_2 \\
\text{s.t.,} & \quad x_1 - x_3 = 4 \\
& \quad 2x_2 - x_3 \geq 5 \\
& \quad x_1, x_3 \geq 0.
\end{align*}
\]

P2) Write the dual of the following program:

\[
\begin{align*}
\text{max} & \quad 2x_1 + x_2 \\
\text{s.t.,} & \quad x_1 + x_2 \leq 5 \\
& \quad x_1 - 2x_2 \leq 2 \\
& \quad x_1, x_2 \geq 0
\end{align*}
\]

P3) Write the dual of the LP relaxation of the min vertex cover then turn it into the standard form.

P4) A Hamiltonian cycle in a directed graph with \(n \) vertices is a directed cycle of length \(n \), i.e., it is a cycle that visits all vertices exactly once and returns back to the starting point. A directed Hamiltonian path in a graph with \(n \) vertices is a path of length \(n - 1 \), i.e., it is a path that visits all vertices of the graph exactly once. For example, the following graph has a Hamiltonian path marked in red but no Hamiltonian cycle.

![Graph with Hamiltonian path marked in red]

Hamiltonian-cycle problem is defined as follows: Given a graph \(G = (V, E) \), does it have a Hamiltonian cycle?

Hamiltonian-path problem is defined as follows: Given a graph \(G = (V, E) \), does it have a Hamiltonian path?

Prove that Hamil-path \(\leq_P \) Hamil-cycle. In other words, suppose we have a program \(A \) that solves the Hamiltonian cycle problem. Design a polynomial time algorithm that on an input graph \(G \) uses \(A \) only polynomial number of times and in polynomial time returns the solution to the Hamiltonian path problem on the given graph \(G \).