CSE421: Design and Analysis of Algorithms May 16, 2024

Shayan Oveis Gharan Problem Solving Session 7

P1) A domino is shape like D] or H Given an n x n table where some of the squares are

removed (in the picture below removed squares are marked with an X), design a polynomial
time algorithm that outputs the maximum number of dominos that can be placed on the table
which are not overlapping and don’t cover any X cells.

For example, given the table on the left the maximum number of dominos that can be placed
is 2.

X

X

Solution: We construct an instance of the bipartite matching problem: First we construct
a graph G: We put a vertex for every square of the table which is not marked with an X;
we connect two vertices u,v with an edge if we can place a domino on them, i.e., if the
corresponding two squares share a side.

We claim that G is a bipartite graph: To see that it is enough to color the graph with two
colors such that any adjacent pair of vertices have distinct colors. We color the cells of the
table like a chessboard, black/white. It follows that any two neighboring squares have opposite
colors, therefore G is bipartite.

Algorithm: We return the size of the maximum matching in G.

Runtime: Runtime is the time to compute the maximum matching in G, G has O(n?) vertices
and O(n?) edges. So, max matching runs in time O(n?).

Correctness: We show max-matching = max number of dominos that can be placed that
don’t cover any X cells.

Max Matching > Max number of dominos: Suppose the maximum number of dominos
we can place on the table is k; choose the corresponding edge for every domino that is placed
call this set of edges M. We claim that M is a matching in G (with k£ edges). This is because
every cell is covered by at most one domino, so every vertex of GG is adjacent to at most one edge
of M. Further, since no dominos are placed on X-cells, each domino corresponds to exactly
one edge of G. This implies Max matching in G is at least the max number of dominos.

Max number of dominos > Max Matching Let M be a maximum matching with k edges
in G. Since every edge in G corresponds to two adjacent cells in the table, we can put one
domino on the table for every edge in M. Furthermore, since G does not have vertices for the
X-cells, no domino will be placed on the X-cells and lastly since M is a matching the dominos
are not overlapping. Therefore, we can put |M| many dominos on the table which are not
overlapping and do not cover any X'’s as desired.

Problem Solving Session 7-1

P2) Given an (unweighted) directed graph G = (V, E), a pair of vertices s,t and an integer 1 <
k < n. Design an algorithm that runs in time polynomial in n, k and outputs yes if there are k
vertex disjoint paths from s to ¢ and no otherwise. For example, in the following graph there
are two edge disjoint paths from s to ¢ but no two vertex disjoint paths from s to ¢.

S >\(_L/ M

For this problem you can assume you have access to a polynomial time algorithm for the edge
disjoint path problem defined as follows: Given a directed graph G and a pair of vertices s,t
we want to find the maximum number of edge disjoint paths from s to t. Two paths P, P»
from s to t are edge disjoint if they don’t share an edge. We will discuss the solution to this
problem in class on Friday.

Solution: Construct H from G by splitting each vertex v # s,t to an “in” and an “out”
vertex.

For any edge u — v in G we connect oyt to v;,. In the special cases of s — v or v — t, we
simply connect s to v;, and vy to t, respectively, in H and

S0

becomes

Then, we run the algorithm from class to find the maximum number of edge disjoint paths
from s to ¢t in H and we output that number. The algorithm obviously runs in time polynomial
in n as it takes O(m+n) to construct graph H and the algorithm to find the maximum number
of edge disjoint paths runs in time O(mn).

Correctness: First, observe that there is a natural bijection between paths from s to ¢ in G

and H. For any path from s to t, say v = s,v',...,v* =t the path s,viln, véut,v?n, ey v'(f;‘/l,t
is a path from s to ¢ in H. And, conversely a path from s to ¢ in H is of the form
S, viln, vl ,v(l);tl, vg; this is because the only out-going edges of s go to in-vertices and every
in-vertex has a unique outgoing vertex to an out-vertex, so in/out vertices should alternate

and we should end at an out-vertex before we go to t.

We claim that the maximum number of vertex disjoint paths in G is equal to the maximum
number of edge disjoint paths in H.

<: suppose we have k-vertex disjoint paths in G Pi,..., P, from s to t; then by the above
bijection we get k-paths Pj,..., P/ from s to t in H. These paths are edge disjoint in H simply
because every v;, — Vgt edge can be used in at most one path, the only possible path among
Py, ..., P, that has vertex v.

>: Suppose we have k-edge disjoint paths Pp,..., P, from s to ¢t in H. Then, by the above
bijection, they map to k paths P[,..., P/ in G from s to ¢t in H. Observe that each of the edges
Vin — Uout can be used in at most on of P, ..., P,. This implies that the paths P, ..., P} are
vertex disjoint.

Problem Solving Session 7-2

