
CSE421: Design and Analysis of Algorithms May 16, 2024

Shayan Oveis Gharan Problem Solving Session 7

P1) A domino is shape like or . Given an n × n table where some of the squares are

removed (in the picture below removed squares are marked with an X), design a polynomial
time algorithm that outputs the maximum number of dominos that can be placed on the table
which are not overlapping and don’t cover any X cells.

For example, given the table on the left the maximum number of dominos that can be placed
is 2.

X

X

X

Solution: We construct an instance of the bipartite matching problem: First we construct
a graph G: We put a vertex for every square of the table which is not marked with an X;
we connect two vertices u, v with an edge if we can place a domino on them, i.e., if the
corresponding two squares share a side.

We claim that G is a bipartite graph: To see that it is enough to color the graph with two
colors such that any adjacent pair of vertices have distinct colors. We color the cells of the
table like a chessboard, black/white. It follows that any two neighboring squares have opposite
colors, therefore G is bipartite.

Algorithm: We return the size of the maximum matching in G.

Runtime: Runtime is the time to compute the maximum matching in G, G has O(n2) vertices
and O(n2) edges. So, max matching runs in time O(n4).

Correctness: We show max-matching = max number of dominos that can be placed that
don’t cover any X cells.

Max Matching ≥ Max number of dominos: Suppose the maximum number of dominos
we can place on the table is k; choose the corresponding edge for every domino that is placed
call this set of edges M . We claim that M is a matching in G (with k edges). This is because
every cell is covered by at most one domino, so every vertex of G is adjacent to at most one edge
of M . Further, since no dominos are placed on X-cells, each domino corresponds to exactly
one edge of G. This implies Max matching in G is at least the max number of dominos.

Max number of dominos ≥ Max Matching Let M be a maximum matching with k edges
in G. Since every edge in G corresponds to two adjacent cells in the table, we can put one
domino on the table for every edge in M . Furthermore, since G does not have vertices for the
X-cells, no domino will be placed on the X-cells and lastly since M is a matching the dominos
are not overlapping. Therefore, we can put |M | many dominos on the table which are not
overlapping and do not cover any X’s as desired.

Problem Solving Session 7-1

P2) Given an (unweighted) directed graph G = (V,E), a pair of vertices s, t and an integer 1 ≤
k ≤ n. Design an algorithm that runs in time polynomial in n, k and outputs yes if there are k
vertex disjoint paths from s to t and no otherwise. For example, in the following graph there
are two edge disjoint paths from s to t but no two vertex disjoint paths from s to t.

s a t

b c

For this problem you can assume you have access to a polynomial time algorithm for the edge
disjoint path problem defined as follows: Given a directed graph G and a pair of vertices s, t
we want to find the maximum number of edge disjoint paths from s to t. Two paths P1, P2

from s to t are edge disjoint if they don’t share an edge. We will discuss the solution to this
problem in class on Friday.

Solution: Construct H from G by splitting each vertex v ∕= s, t to an “in” and an “out”
vertex.

For any edge u → v in G we connect uout to vin. In the special cases of s → v or v → t, we
simply connect s to vin and vout to t, respectively, in H and

v

becomes

vin vout

Then, we run the algorithm from class to find the maximum number of edge disjoint paths
from s to t in H and we output that number. The algorithm obviously runs in time polynomial
in n as it takes O(m+n) to construct graph H and the algorithm to find the maximum number
of edge disjoint paths runs in time O(mn).

Correctness: First, observe that there is a natural bijection between paths from s to t in G
and H. For any path from s to t, say v0 = s, v1, . . . , vk = t the path s, v1in, v

1
out, v

2
in, . . . , v

k−1
out , t

is a path from s to t in H. And, conversely a path from s to t in H is of the form
s, v1in, v

1
out, . . . , v

l−1
out , vt; this is because the only out-going edges of s go to in-vertices and every

in-vertex has a unique outgoing vertex to an out-vertex, so in/out vertices should alternate
and we should end at an out-vertex before we go to t.

We claim that the maximum number of vertex disjoint paths in G is equal to the maximum
number of edge disjoint paths in H.

≤: suppose we have k-vertex disjoint paths in G P1, . . . , Pk from s to t; then by the above
bijection we get k-paths P ′

1, . . . , P
′
k from s to t in H. These paths are edge disjoint in H simply

because every vin → vout edge can be used in at most one path, the only possible path among
P1, . . . , Pk that has vertex v.

≥: Suppose we have k-edge disjoint paths P1, . . . , Pk from s to t in H. Then, by the above
bijection, they map to k paths P ′

1, . . . , P
′
k in G from s to t in H. Observe that each of the edges

vin → vout can be used in at most on of P1, . . . , Pk. This implies that the paths P ′
1, . . . , P

′
k are

vertex disjoint.

Problem Solving Session 7-2

