
CSE421: Design and Analysis of Algorithms May 9, 2022

Shayan Oveis Gharan Section 6

P1) You are given a tree T where every node i has weight wi ≥ 0. Design a polynomial time
algorithm to find the weight of the largest weight independent set in T . For example, suppose
in the following picture w1 = 3, w2 = 1, w3 = 4, w4 = 3, w5 = 6. the maximum independent
set has nodes 3, 4, 5 with weight 4 + 3 + 6 = 13.

1

2 3

4 5

Solution: Make the tree T rooted at an arbitrary node r, and consider the corresponding
outward rooted tree. For any vertex v, let T (v) denote the subtree of T rooted at v. So,
T (r) is the whole tree T . For a node v define OPT (v) to be the weight of the maximum
independent set in the tree T (v). So, the solution of the problem is OPT (r). The algorithm
runs in polynomial time. This is because first we only have n many sub-problems one for every
possible sub-tree of T and we compute the value of each subproblem only once. Furthermore,
we spend at most O(n)-time to find the value of each sub-problem because we only look at
the children and grand-children of the given node v.

Function MaxInd(v)
If v is a leaf then return OPT (v) = wv

if OPT (v) is not yet computed then
Let a =

!
u is a child of v MaxInd(u), b =

!
u is a grand-child of v MaxInd(u)

OPT (v) ← max{a, b+ wv}
end
Return OPT (v)

It remains to prove the correctness. Given a node v let us study OPT (v). In the proof we
use the following simple fact: If G is a disconnected graph, then the maximum (weighted)
independent set of G is the sum of the maximum (weighted) independent sets of connected
components of G.

Case 1: v is not in the independent set chosen in OPT (v). In this case there is no interaction
between the independent sets chosen in subtrees of the children of v, because these subtrees are
not connected to each other. So, OPT (v) is nothing but the sum of the maximum weight inde-
pendent set of each of the subtrees of the children of v. So, OPT (v) =

!
u is a child of v OPT (u).

Section 6-1



Case 2: v is in independent set chosen in OPT (v). Let I be the Optimum independent set.
So v ∈ I. But then, all children of v are not in I because I is an independent set. Now, look
at the subtrees rooted at grand-children of v. there are no interactions between these subtrees
because there these subtrees are not connected to each other. So, OPT (v) would choose the
maximum independent set in each of them and OPT (v) = wv +

!
u is a grand-child of v OPT (u).

Therefore,

OPT (v) =

"
wv if v is a leaf

max{
!

u is a child of v OPT (u), wv +
!

u is a grand-child of v OPT (u)} otherwise.

P2) A country has 2n cities; n of them are on a line north of the river with x-coordinates a1, . . . , an
and n of them are on a line south of the river with x-coordinates b1, . . . , bn. You can assume
no two cities in the north have the same coordinates and no two in the south have the same
coordinates. We want to make maximum number of bridges between north and south. A
bridge is a direct line connecting the i-th city in the north to the i-th city in the south, i.e., ai
to bi. Design a polynomial time algorithm that outputs the maximum number of bridges we
can build such that no two bridges cross each other. For example if a1 = 5, a2 = 2, a3 = 4 and
b1 = 1, b2 = 4, b3 = 2 then, the maximum number of bridges is 1.

a1a2 a3

b1 b2b3

Algorithm: We sort the cities north of the river, so we assume perhaps after renaming that
a1 ≤ a2 ≤ · · · ≤ an. Furthermore, suppose for each i, N(i) is the location ai before sorting, i.e.,
that means that we can only make bridge between ai and bN(i). Then, we run the following
algorithm: I remark that there is also another way to solve this problem by reducing it to the

Set M [i, 0] = 0 and M [0, i] = 0 for all 1 ≤ i ≤ n;
for i = 1 → n do

for j = 1 → n do
Suppose N(i) has the k-th smallest x-coordinate south of river;
if N(i) > k then

M [i, j] ← M [i− 1, j];
end
else

M [i, j] ← max{M [i− 1, j], 1 +M [i− 1, k − 1]};
end

end

end
Return M [n, n];

Section 6-2



longest increasing subsequence problem.

Runtime: There are n2 many subproblems and it takes O(1) to solve every subproblem. So,
the algorithm runs in O(n2).

Correctness: Let OPT (i, j) = be maximum number of non-crossing bridges that we can draw
between the cities a1, . . . , ai and the j-th leftmost cities in the south such that no two bridges
cross with the constraint that each ai can only have a bridge to bN(i). For a base case notice
that if i = 0, i.e., we have no cities in the north or j = 0 that we have no cities in the south
OPT (i, j) = 0. Now, we discuss how to solve OPT (i, j). We guess the last decision that OPT
takes, i.e., whether to build a bridge between ai, bN(i) or not:

Case 1) OPT (i, j) doesn’t have a bridge between ai, bN(i). Then, the i-th city in the north
is useless, and OPT (i, j) will simply be the maximum number of bridges between the i − 1
leftmost cities in the north and j leftmost cities in the south, i.e., OPT (i− 1, j).

Case 2) OPT (i, j) draws a bridge between ai, bN(i). Suppose that N(i) has the k-th smallest
x-coordinate among all cities south of the river. First, notice that this bridge can be built
only if k ≥ j, i.e., if k > j we can only be in case 1. If k ≤ j and we draw a bridge between
ai, bN(i) then we cannot make any bridge between cities a1, . . . , ai−1 and the j − k cities that
come after bN(i) in the south; any such bridge would cross the ai ↔ bN(i) bridge. Thus, we
can only have bridges between cities a1, . . . , ai−1 and the left k− 1 cities in the south, i.e., we
need to take OPT (i− 1, k − 1).

Taking the best of the two cases proves the correctness.

Section 6-3


