P1) Let G be a tree. Use induction to prove that the number of leaves of G is at least the number of vertices of degree at least 3 in G. For example, the following tree has 3 leaves and 1 vertex of degree at least 3, and $3 \geq 1$.

P2) Let G be a graph with n vertices and at least n edges. Show that G has a cycle.

P3) Given a connected undirected graph $G = (V, E)$ with n vertices and m edges. Design an $O(m + n)$ time algorithm that outputs an edge e of G such that if we delete e, G remains connected. If no such edge exists output “Impossible”. For example in the following graph if you delete the red edges the graph remains connected.

We write the psuedo-code below, although the above description is already enough:
Function $BFS(s)$

Initialize: mark all vertices “undiscovered”
mark s “discovered”
queue $= \{ \ s \ \}$
while queue not empty do
 $u = \text{remove}_\text{first}(\text{queue})$
 for each edge $\{u, x\}$ do
 if x is “undiscovered” then
 mark x “discovered”
 append x on queue
 end
 else
 output $\{u, x\}$ and end the algorithm
 end
end
mark u “fully-explored”
end
output “Impossible”

Algorithm 1: Algorithm for P3