CSE421: Design and Analysis of Algorithms

Shayan Oveis Gharan
Section 2

P1) Let G be a tree. Use induction to prove that the number of leaves of G is at least the number of vertices of degree at least 3 in G. For example, the following tree has 3 leaves and 1 vertex of degree at least 3 , and $3 \geq 1$.

P2) Let G be a graph with n vertices and at least n edges. Show that G has a cycle.
P3) Given a connected undirected graph $G=(V, E)$ with n vertices and m edges. Design an $O(m+n)$ time algorithm that outputs an edge e of G such that if we delete e, G remains connected. If no such edge exists output "Impossible". For example in the following graph if you delete the red edges the graph remains connected.

We write the psueodo-code below, although the above description is already enough:

Function $B F S(s)$

Initialize: mark all vertices "undiscovered"
mark s "discovered"
queue $=\{\mathrm{s}\}$
while queue not empty do
$u=$ remove_first(queue)
for each edge $\{u, x\}$ do
if x is "undiscovered" then
mark x "discovered"
append x on queue
end
else
output $\{u, x\}$ and end the algorithm
end
end
mark u "fully-explored"
end
output "Impossible"
Algorithm 1: Algorithm for P3

