April 4, 2024
Section 2

P1) Let G be a tree. Use induction to prove that the number of leaves of G is at least the number of vertices of degree at least 3 in G. For example, the following tree has 3 leaves and 1 vertex of degree at least 3, and $3 \ge 1$.

- P2) Let G be a graph with n vertices and at least n edges. Show that G has a cycle.
- P3) Given a connected undirected graph G = (V, E) with *n* vertices and *m* edges. Design an O(m + n) time algorithm that outputs an edge *e* of *G* such that if we delete *e*, *G* remains connected. If no such edge exists output "Impossible". For example in the following graph if you delete the red edges the graph remains connected.

We write the psueodo-code below, although the above description is already enough:

Function $BFS(s)$
Initialize: mark all vertices "undiscovered"
mark s "discovered"
queue = $\{s\}$
while queue not empty do
$u = \text{remove_first}(\text{queue})$
for each edge $\{u, x\}$ do
if x is "undiscovered" then
mark x "discovered"
append x on queue
end
else
output $\{u, x\}$ and end the algorithm
end
end
mark u "fully-explored"
end
output "Impossible"
T T T T

Algorithm 1: Algorithm for P3