
CSE421: Design and Analysis of Algorithms April 4, 2024

Shayan Oveis Gharan Section 2

P1) Let G be a tree. Use induction to prove that the number of leaves of G is at least the number
of vertices of degree at least 3 in G. For example, the following tree has 3 leaves and 1 vertex
of degree at least 3, and 3 ≥ 1.

Solution: Let P(n) denote the statement “The number of leaves of any tree with n vertices
is at least the number of vertices of degree at least 3.”

Base Case: P (1) and P (2) holds obviously as there is no vertex of degree at least 3.

IH: Suppose P (n− 1) holds for some n ≥ 3.

IS: We prove P (n). Let T be an arbitrary tree with n nodes. Suppose that T has a leaves
and b nodes of degree at least three. We need to show that a ≥ b. Since T is a tree it has
a leaf, say x. Let T ′ = T − x denote the tree T with the vertex x and all its edges removed.
As we prove in class when we remove a leaf from a tree the remaining graph, T ′, is also tree.
Suppose T ′ has a′ leaves and b′ nodes of degree at least 3. By IH a′ ≥ b′.

Let y be the unique neighbor of x in T . Note that degT ′(y) = degT (y)− 1.

Case 1: degT (y) = 2: Then a = a′ because y is a leaf in T ′ which is no longer leaf in T
whereas we get a new leaf, x, in T . Also in this case, b = b′. Therefore, a = a′ ≥ b′ = b as
desired.

Case 2: degT (y) ≥ 3: In this case, a = a′ + 1, because y is not a leaf in T ′ so we have a new
leaf, x, in T . And, obviously, b ≤ b′ + 1. Therefore, b ≤ b′ + 1 ≤ a′ + 1 = a as desired.

Note that degT (y) = 1 cannot happen because in such a case T must have two nodes, i.e.,
n = 2.

P2) Let G be a graph with n vertices and at least n edges. Show that G has a cycle.

Solution: We prove by contradiction! Suppose G has no cycle. Then,

Case 1: G is connected. Then since G has no cycles, G is a tree with n vertices. So it must
have n− 1 edges. But we said it has ≥ n. That is a contradiction.

Case 2: G is disconnected. Suppose G has ℓ connected components with number of vertices
n1, n2, . . . , nℓ and number of edges m1,m2, . . . ,mℓ.

Claim: For some i we must have mi ≥ ni. Pf: For contradiction assume mi < ni for all
i. Summing up these inequalities we get m =

!
imi <

!
i ni = n. But that contradicts the

assumption that m ≥ n.

Section 2-1



So let i be one of the indices for which mi ≥ ni. But then the i-th component is connected
and has no cycles. So similar to Case 1 we get a contradiction.

P3) Given a connected undirected graph G = (V,E) with n vertices and m edges. Design an
O(m + n) time algorithm that outputs an edge e of G such that if we delete e, G remains
connected. If no such edge exists output “Impossible”. For example in the following graph if
you delete the red edges the graph remains connected.

Solution: We run the following algorithm: We run BFS from an arbitrary vertex s. In the
BFS code, when examining neighbors of u, say we find an already discovered vertex x that is
not the parent of u. Then we output the edge (u, x) and we end the algorithm. Otherwise, if
all edges have been examined without finding such a vertex, we output “Impossible”.

Correctness: Let T be the BFS tree. Since G is connected, all vertices are reachable from s;
so T has n vertices and n− 1 edges.

We consider the following cases: If G has no extra edges other than edges of T , i.e., G has
n − 1 edges. Then if we remove any edge of G the remaining graph is disconnected. To see
this, notice that G− e has no cycles (since G has no cycles) and if in addition it is connected
then it must have n − 1 edges (not n − 2). In such a case since every edge of G is in T our
code never finds an already discovered vertex and it outputs “Impossible”.

Otherwise, suppose G has extra edges in addition to those contained in T . Then, the algorithm
will eventually output some edge e = (u, x) that is not in T while inspecting vertex u. This
means that x was previously already marked as discovered, and therefore there is a path in
the BFS tree T that connects x to u. Together with the edge e = (u, x), this forms a cycle.

Running time: We are just adding one line to the BFS code, so the algorithm runs in the
BFS time, i.e., O(m+ n).

We write the psueodo-code below, although the above description is already enough:

Section 2-2



Function BFS(s)
Initialize: mark all vertices “undiscovered”
mark s “discovered”, set P [s] = s
queue = { s }
while queue not empty do

u = remove first(queue)
for each edge {u, x} do

if x is “undiscovered” then
mark x “discovered”
Set Parent of x to be u, P [x] = u. append x on queue

end
else

If P [u] ∕= x, output {u, x} and end the algorithm
end

end
mark u “fully-explored”

end
output “Impossible”

Algorithm 1: Algorithm for P3

Section 2-3


