CSE421: Design and Analysis of Algorithms

P1) Let G be a tree. Use induction to prove that the number of leaves of G is at least the number of vertices of degree at least 3 in G. For example, the following tree has 3 leaves and 1 vertex of degree at least 3 , and $3 \geq 1$.

Solution: Let $\mathrm{P}(\mathrm{n})$ denote the statement "The number of leaves of any tree with n vertices is at least the number of vertices of degree at least 3."

Base Case: $P(1)$ and $P(2)$ holds obviously as there is no vertex of degree at least 3 .
IH: Suppose $P(n-1)$ holds for some $n \geq 3$.
IS: We prove $P(n)$. Let T be an arbitrary tree with n nodes. Suppose that T has a leaves and b nodes of degree at least three. We need to show that $a \geq b$. Since T is a tree it has a leaf, say x. Let $T^{\prime}=T-x$ denote the tree T with the vertex x and all its edges removed. As we prove in class when we remove a leaf from a tree the remaining graph, T^{\prime}, is also tree. Suppose T^{\prime} has a^{\prime} leaves and b^{\prime} nodes of degree at least 3. By IH $a^{\prime} \geq b^{\prime}$.
Let y be the unique neighbor of x in T. Note that $\operatorname{deg}_{T^{\prime}}(y)=\operatorname{deg}_{T}(y)-1$.
Case 1: $\operatorname{deg}_{T}(y)=2$: Then $a=a^{\prime}$ because y is a leaf in T^{\prime} which is no longer leaf in T whereas we get a new leaf, x, in T. Also in this case, $b=b^{\prime}$. Therefore, $a=a^{\prime} \geq b^{\prime}=b$ as desired.

Case 2: $\operatorname{deg}_{T}(y) \geq 3$: In this case, $a=a^{\prime}+1$, because y is not a leaf in T^{\prime} so we have a new leaf, x, in T. And, obviously, $b \leq b^{\prime}+1$. Therefore, $b \leq b^{\prime}+1 \leq a^{\prime}+1=a$ as desired.
Note that $\operatorname{deg}_{T}(y)=1$ cannot happen because in such a case T must have two nodes, i.e., $n=2$.

P2) Let G be a graph with n vertices and at least n edges. Show that G has a cycle.
Solution: We prove by contradiction! Suppose G has no cycle. Then,
Case 1: G is connected. Then since G has no cycles, G is a tree with n vertices. So it must have $n-1$ edges. But we said it has $\geq n$. That is a contradiction.
Case 2: G is disconnected. Suppose G has ℓ connected components with number of vertices $n_{1}, n_{2}, \ldots, n_{\ell}$ and number of edges $m_{1}, m_{2}, \ldots, m_{\ell}$.
Claim: For some i we must have $m_{i} \geq n_{i}$. Pf: For contradiction assume $m_{i}<n_{i}$ for all i. Summing up these inequalities we get $m=\sum_{i} m_{i}<\sum_{i} n_{i}=n$. But that contradicts the assumption that $m \geq n$.

So let i be one of the indices for which $m_{i} \geq n_{i}$. But then the i-th component is connected and has no cycles. So similar to Case 1 we get a contradiction.

P3) Given a connected undirected graph $G=(V, E)$ with n vertices and m edges. Design an $O(m+n)$ time algorithm that outputs an edge e of G such that if we delete e, G remains connected. If no such edge exists output "Impossible". For example in the following graph if you delete the red edges the graph remains connected.

Solution: We run the following algorithm: We run BFS from an arbitrary vertex s. In the BFS code, when examining neighbors of u, say we find an already discovered vertex x that is not the parent of u. Then we output the edge (u, x) and we end the algorithm. Otherwise, if all edges have been examined without finding such a vertex, we output "Impossible".

Correctness: Let T be the BFS tree. Since G is connected, all vertices are reachable from s; so T has n vertices and $n-1$ edges.
We consider the following cases: If G has no extra edges other than edges of T, i.e., G has $n-1$ edges. Then if we remove any edge of G the remaining graph is disconnected. To see this, notice that $G-e$ has no cycles (since G has no cycles) and if in addition it is connected then it must have $n-1$ edges (not $n-2$). In such a case since every edge of G is in T our code never finds an already discovered vertex and it outputs "Impossible".
Otherwise, suppose G has extra edges in addition to those contained in T. Then, the algorithm will eventually output some edge $e=(u, x)$ that is not in T while inspecting vertex u. This means that x was previously already marked as discovered, and therefore there is a path in the BFS tree T that connects x to u. Together with the edge $e=(u, x)$, this forms a cycle.

Running time: We are just adding one line to the BFS code, so the algorithm runs in the BFS time, i.e., $O(m+n)$.

We write the psueodo-code below, although the above description is already enough:

Function $B F S(s)$

Initialize: mark all vertices "undiscovered"
mark s "discovered", set $P[s]=s$
queue $=\{\mathrm{s}\}$
while queue not empty do
$u=$ remove_first(queue)
for each edge $\{u, x\}$ do
if x is "undiscovered" then
mark x "discovered"
Set Parent of x to be $u, P[x]=u$. append x on queue
end
else
If $P[u] \neq x$, output $\{u, x\}$ and end the algorithm end
end
mark u "fully-explored"
end
output "Impossible"
Algorithm 1: Algorithm for P3

