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P1) Consider the following stable matching instance:

c1 : a3 > a1 > a2 > a4 a1 : c4 > c1 > c3 > c2

c2 : a2 > a1 > a4 > a3 a2 : c1 > c3 > c2 > c4

c3 : a2 > a3 > a1 > a4 a3 : c1 > c3 > c4 > c2

c4 : a3 > a4 > a1 > a2 a4 : c3 > c1 > c2 > c4

a) Run the Gale-Shapley Algorithm with companies proposing on the instance above. When
choosing which free company to propose next, always choose the one with the smallest
index (e.g., if c1 and c2 are both free, always choose c1). The steps of the Gale-Shapley
Algorithm with the companies with highest index proposing first:

c4 chooses a3 (c4, a3)

c3 chooses a2 (c3, a2), (c4, a3)

c2 chooses a2 (c3, a2), (c4, a3)

c2 chooses a1 (c2, a1), (c3, a2), (c4, a3)

c1 chooses a3 (c1, a3), (c2, a1), (c3, a2)

c4 chooses a4 (c1, a3), (c2, a1), (c3, a2), (c4, a4)

b) Now run the algorithm with applicants proposing, breaking ties by taking the free applicant
with the smallest index. Do you get the same result? The steps of the Gale-Shapley
Algorithm with applicants proposing:

a1 chooses c4 (c4, a1)

a2 chooses c1 (c1, a2), (c4, a1)

a3 chooses c1 (c1, a3), (c4, a1)

a2 chooses c3 (c1, a3), (c3, a2), (c4, a1)

a4 chooses c3 (c1, a3), (c3, a2), (c4, a1)

a4 chooses c1 (c1, a3), (c3, a2), (c4, a1)

a4 chooses c2 (c1, a3), (c2, a4), (c3, a2), (c4, a1)

No, the result is different when we have the applicants propose as opposed to the compa-
nies.

P2) Show that an instance of the stable matching problem has exactly one stable matching if and
only if the company optimal matching is equal to the applicant optimal matching.

First, notice that this is an if and only if problem. That means that you have to prove both
directions. In this case you have to mark each direction clearly:
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Direction 1: Suppose we are given an instance of the stable matching problem
with exactly one stable matching then the company optimal matching is equal to
applicant optimal. This holds trivially since both company optimal and applicant optimal
are stable; if they are not the same then there are two stable matchings

Direction 2: Suppose we are given an instance of the stable matching problem
such that the company optimal matching is equal to applicant optimal, then this
instance has exactly one stable matching. We prove by contradiction. Let M∗ be the
company/applicant optimal. and suppose there is another stable matching M different from
M∗. So, there must be an applicant a who is matched to two different companies in M/M∗ say
c1 in M and c2 in M∗. So, both c1 and c2 are valid partners of a. So, the best valid partner
of a is different from the worst valid partner of a. But that means that applicant optimal
matching is not the same as the comapny optimal contradiction. So, we must have exactly
one stable matching.

P3) Suppose we have drawn n circles on the plane. Show that we can color the regions with 2 colors
(R/B) such that any two neighboring regions are colored with distinct colors. Two regions are
neighbors if the share a line segment. See the following example:
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a) First explain what is wrong with the following inductive proof: We prove by induction that
any n circles drawn on the plane can be colored with R/B such that any two neighboring
regions have distinct colors.

The claim obviously holds for n = 1 we have a single circle and we color inside R and
outside B.

Suppose have colored the regions with n − 1 circles. Now, we add the n-th circle in such
a way that it doesn’t cross any of the previous n − 1 circles. and we color inside of it the
opposite of the outside region.

Solution: This proof is not following the framework given in class. Predicate and
induction hypothesis are not clearly defined.

But the major problem is that instead of starting with an arbitrary instance with n circles
and reducing it to an instance with n − 1 circles it starts with an instance with n − 1
circles and add a specifically chosen circle. If you think about it more this proof only solves
instance of the following kind, not all possible arrangements of n circles on the
plane.

Section 1-2



b) Now, solve the problem with a correct inductive proof.

Solution: We define the following predicate:

P (n) =Given any set of n circles on the plane we can color the regions with R/B such that
any two neighboring regions are colored with distinct colors.

Base case: P (1) Suppose we have one circle. Then we color inside R and outside B.

IH: Suppose P (n− 1) holds for some n ≥ 2.

IS:We prove P (n). Suppose we are given n circles arbitrarily drawn on the plane C1, . . . , Cn.

The first step is to construct an instance of P (n−1). We can delete any of the circles (here
we have a choice). We delete Cn and now we are left with n− 1 circles on the plane.

By IH we color the regions defined by C1, . . . , Cn−1 with R/B such that any two neighboring
regions are colored differently.

Now, we add back Cn. Some regions are not crosses by Cn, but every region crossed by
Cn is divided into two neighboring regions of the same color. Now, we flip the color of
every region inside Cn. We claim that this gives a valid coloring.

First, notice by doing this, any two neighboring regions one inside and one outside of Cn

will have distinct colors.

Two neighboring regions both outside of Cn don’t change colors so still will have distinct
colors. Two neighboring regions both inside Cn will have both of their colors flipped so still
they will have distinct colors.

Section 1-3


