NAME: \qquad

CSE 421
Introduction to Algorithms
Final Exam Winter 2005
P. Beame

14 March 2005

DIRECTIONS:

- Answer the problems on the exam paper.
- Open book. Open notes.
- If you need extra space use the back of a page
- You have 1 hour and 50 minutes to complete the exam.
- Please do not turn the page until you are instructed to do so.
- Good Luck!

1	$/ 33$
2	$/ 20$
3	$/ 18$
4	$/ 20$
5	$/ 20$
6	$/ 20$
7	$/ 20$
8	$/ 10$
Total	$/ 161$

1. (33 points, 3 each) For each of the following problems circle True or False. You do not need to justify your answer.
(a) If f and g are two different flows on the same flow graph (G, s, t) and if $\nu(f) \geq \nu(g)$ then every edge e in G has $f(e) \geq g(e)$. True False
(b) If f is a maximum flow on a flow graph $(G=(V, E), s, t)$ and B is the set of vertices in V that can reach t in the residual graph G_{f} then $(V-B, B)$ is a minimum capacity $s-t$ cut in G.
True False
(c) If f is a maximum flow on a flow graph (G, s, t) and (S, T) is a minimum capacity s - t cut in G then every edge e having endpoints on different sides of (S, T) has $f(e)$ equal to the capacity of e. True False
(d) If problem B is $N P$-hard and $A \leq_{P} B$ then A is $N P$-hard. True False
(e) If problem A is $N P$-hard and $A \leq_{P} B$ then B is $N P$-hard. True False
(f) If $P \neq N P$ then every problem in $N P$ requires exponential time. True False
(g) If problem A is in P then $A \leq_{P} B$ for every problem B in $N P$. True False
(h) If G is a weighted graph with n vertices and m edges that does not contain negativeweight cycle, then the iteration of the Bellman-Ford algorithm will reach a fixed point in at most $n-1$ rounds. True False
(i) If G is a weighted graph with n vertices and m edges that does contain negative-weight cycle, then for every vertex v in G the shortest path from v to t in G containing n edges is strictly shorter than the shortest path from v to t in G containing $n-1$ edges.

True False

(j) A divide and conquer algorithm for $n \times n$ matrix multiplication that solves the problem using 24 matrix multiplication subproblems of size $n / 3$ and $O\left(n^{2}\right)$ additional work for recombining would be more efficient than the usual $\Theta\left(n^{3}\right)$ matrix multiplication algorithm. True False
(k) A divide and conquer algorithm for the selection problem that reduced the problem on lists of size n to one selection problem of size $3 n / 20$ and another selection problem of size $9 n / 10$ plus a linear amount of extra work would yield a linear time algorithm.

True False

2. (20 points) Consider the following flow network with a flow f shown. An edge labelled " b " means that it has capacity b and flow 0 . An edge labelled " a / b " means that the flow on that edge is a and the capacity is b.

(a) (10 points) Draw the residual graph G_{f}.

(a)

(c)

©
©

(b)

(d)
(b) (3 points) What augmenting path in this graph would result in the greatest increase in flow value? (List the names of the vertices on this path in order.)
(c) (7 points) On the diagram below, indicate the new flow values resulting from augmenting along the path you found in part (b).

3. (18 points) For each of the following recurrences give the time and space that would be required by a simple dynamic programming algorithm to compute the answer where the values of the w function are given as input.
(a) Compute $O P T(n)$ where $O P T(1)=1$ and $O P T(i)=\min _{1 \leq j<i}\{O P T(j) / j+w(j)\}$.

Time $\mathbf{O}(\quad) \quad$ Space $O(\quad)$

(b) Compute $\operatorname{OPT}(m, n)$ where $\operatorname{OPT}(i, 0)=O P T(0, j)=0$ for all i and j and
$O P T(i, j)=\min \{O P T(i-1, j)+2, O P T(i, j-1)+1, O P T(i-1, j-1) / 2+w(j)\}$ for $i, j>0$.

Time O() Space O()
(c) Compute $\operatorname{OPT}(1, n)$ where $\operatorname{OPT}(i, i)=0$ for all i, and
$O P T(i, j)=\min \{O P T(i, k)+O P T(k+1, j)+w(k): i \leq k<j\}$ for all $i<j$.
Time O() Space O()
4. (20 points) You are given a sequence of n bits $x_{1}, \ldots, x_{n} \in\{0,1\}$. Your output is to be either

- any i such that $x_{i}=1$ or
- the value 0 if the input is all 0 's.

The only operation you are allowed to use to access the inputs is a function Group-Test where

$$
\text { Group-Test }(i, j)= \begin{cases}1 & \text { if some bit in } x_{i}, \ldots, x_{j} \text { has value } 1 \\ 0 & \text { if all bits in } x_{i}, \ldots, x_{j} \text { have value } 0\end{cases}
$$

(Historical Note: In World War I, the army was testing recruits for syphilis which was rare but required a time-consuming though accurate blood test. They realized that they could pool the blood from several recruits at once and save time by eliminating large groups of recruits who didn't have syphilis.)
(a) (15 points) Design a divide and conquer algorithm to solve the problem that uses only $O(\log n)$ calls to Group-Test in the worst case. Your algorithm should never access the x_{i} directly.
(b) (5 points) Briefly justify your bound on the number of calls.
5. (20 points) In classifying butterflies of several species, a biologist makes time-consuming comparisons between butterfly features to determine whether or not two butterflies are the same species. A biologist wants to determine as efficiently as possible whether or not there is a dominant species among n butterfly specimens, $B=\left(b_{1}, \ldots, b_{n}\right)$. (A dominant species is one that occurs strictly more than $n / 2$ times in the list of specimens.)
(a) Describe a divide and conquer algorithm $\operatorname{Dominant}(B, n)$ to tell the biologist how to do this in $O(n \log n)$ applications of operation $\operatorname{Same}\left(b, b^{\prime}\right)$ which returns true if b and b^{\prime} are the same species and false otherwise.
(b) Explain why your solution is correct.
(c) Write the recurrence that justifies your claim for the $O(n \log n)$ running time.
6. (20 points) You are given a directed acyclic graph $G=(V, E)$ and a node node $t \in V$. Design a linear time algorithm to compute for each vertex $v \in V$ the number of different paths from v to t in G. Analyze its running time in terms of $n=|V|$ and $m=|E|$.
7. (20 points) The Number Partition problem asks, given a collection of integers (which can be positive or negative) y_{1}, \ldots, y_{n} whether or not it is possible to partition these numbers into two groups so that the sum in each group is the same. Prove that Number Partition is NP-complete by solving the following problems.
(a) Show that Number Partition is in NP.
(b) Show that Subset Sum \leq_{P} Number Partition Recall that in the Subset Sum problem we are given a collection of integers (which can be positive and negative), we want to see if it is possible find a subset that sum up to 1 . Hint: Given an input to Subset Sum include two large numbers whose size differs by $S-2$ where S is the sum of all input numbers.
8. (10 points) The two processor interval scheduling problem takes as input a sequence of request intervals $\left(s_{1}, f_{1}\right), \ldots,\left(s_{n}, f_{n}\right)$ just like the unweighted interval scheduling problem except that it produces two disjoint subsets $A_{1}, A_{2} \subset[n]$ such that all requests in A_{1} are compatible with each other and all requests in A_{2} are compatible with each other and $\left|A_{1} \cup A_{2}\right|$ is as large as possible. (A_{1} might contain requests that are incompatible with requests in A_{2}.) Does the following greedy algorithm produce optimal results? If yes argue why it does; if no produce a counterexample.

```
Sort requests by increasing finish time
A}=
A2=\emptyset
while there is any request ( }\mp@subsup{s}{i}{},\mp@subsup{f}{i}{})\mathrm{ compatible with either }\mp@subsup{A}{1}{}\mathrm{ or }\mp@subsup{A}{2}{}\mathrm{ do
    Add the first unused request, if any, compatible with }\mp@subsup{A}{1}{}\mathrm{ to }\mp@subsup{A}{1}{}\mathrm{ .
    Add the first unused request, if any, compatible with }\mp@subsup{A}{2}{}\mathrm{ to }\mp@subsup{A}{2}{}\mathrm{ .
end while
```

