NAME: \qquad

CSE 421
Introduction to Algorithms

Sample Midterm Exam Fall 2014

DIRECTIONS:

- Answer the problems on the exam paper.
- You are allowed one cheat sheet.
- Justify all answers with proofs, unless the facts you need have been proved in class or in the book.
- If you need extra space use the back of a page
- You have 50 minutes to complete the exam.

1	$/ 25$
2	$/ 25$
3	$/ 25$
4	$/ 25$
Total	$/ 100$

- Please do not turn the exam over until you are instructed to do so.
- Good Luck!

1. (25 points, 5 each) For each of the following problems answer True or False and BRIEFLY JUSTIFY you answer.
(a) $n^{2.1}=O\left(n^{2} \log n\right)$.
(b) There is a polynomial time algorithm for deciding whether a graph is bipartite or not.
(c) If an undirected connected graph G has a unique heaviest weight edge e, then e cannot be part of any minimum spanning tree.
(d) If all edges in a graph have weight 1, then there is an $O(m+n)$ time algorithm to find the minimum spanning tree, where m is the number of edges and n is the number of vertices.
(e) If $T(n) \leq 10 T(n / 3)+n^{3}, T(1)=1$, then $T(n)=O\left(n^{3}\right)$.
2. (25 points) A perfect matching of an undirected graph on $2 n$ vertices is a matching of size n, namely n edges such that each vertex is part of exactly one edge. Give a polynomial time algorithm that takes a tree on $2 n$ vertices as input and finds a perfect matching in the tree, if such a matching exists. HINT: Give a greedy algorithm that tries to match a leaf in each step.
For example, in the following tree the dashed edges form a perfect matching of a given tree

3. (25 points) A contiguous subsequence of a list S is a subsequence made up of consecutive elements of S. For instance, if S is

$$
5,15,-30,10,-5,40,10
$$

then $15,-30,10$ is a contiguous subsequence but $5,15,40$ is not. Give a polynomial time algorithm that takes n numbers as input, and outputs the contiguous sequence of maximum sum.
4. (25 points) Given sorted array of n distinct integers, arranged in increasing order $A[1, n]$, you want to find out whether there is an index i for which $A[i]=i$. Give an algorithm that runs in time $O(\log n)$ for this problem. HINT: Consider the algorithm that compares $A[\lceil n / 2\rceil]$ and $\lceil n / 2\rceil$, and uses that comparison to recurse on either the first half or the second half of the array. Prove that if $A[\lceil n / 2\rceil]>\lceil n / 2\rceil$, such an i cannot be in last $n-\lceil n / 2\rceil$ coordinates, and if $A[\lceil n / 2\rceil]<\lceil n / 2\rceil$, then such an i cannot be in the first $\lceil n / 2\rceil$ coordinates.

