
NAME:

CSE 421
Introduction to Algorithms

Sample Midterm Exam Fall 2014

DIRECTIONS:

• Answer the problems on the exam paper.

• You are allowed one cheat sheet.

• Justify all answers with proofs, unless the facts you
need have been proved in class or in the book.

• If you need extra space use the back of a page

• You have 50 minutes to complete the exam.

• Please do not turn the exam over until you are in-
structed to do so.

• Good Luck!

1 /25

2 /25

3 /25

4 /25

Total /100

1



1. (25 points, 5 each) For each of the following problems answer True or False and BRIEFLY
JUSTIFY you answer.

(a) n2.1 = O(n2 log n).

(b) There is a polynomial time algorithm for deciding whether a graph is bipartite or not.

(c) If an undirected connected graph G has a unique heaviest weight edge e, then e cannot
be part of any minimum spanning tree.

(d) If all edges in a graph have weight 1, then there is an O(m + n) time algorithm to find
the minimum spanning tree, where m is the number of edges and n is the number of
vertices.

(e) If T (n) ≤ 10T (n/3) + n3, T (1) = 1, then T (n) = O(n3).

2



2. (25 points) A perfect matching of an undirected graph on 2n vertices is a matching of size
n, namely n edges such that each vertex is part of exactly one edge. Give a polynomial time
algorithm that takes a tree on 2n vertices as input and finds a perfect matching in the tree,
if such a matching exists. HINT: Give a greedy algorithm that tries to match a leaf in each
step.

For example, in the following tree the dashed edges form a perfect matching of a given tree

3



3. (25 points) A contiguous subsequence of a list S is a subsequence made up of consecutive
elements of S. For instance, if S is

5, 15,−30, 10,−5, 40, 10,

then 15,−30, 10 is a contiguous subsequence but 5, 15, 40 is not. Give a polynomial time
algorithm that takes n numbers as input, and outputs the contiguous sequence of maximum
sum.

4



4. (25 points) Given sorted array of n distinct integers, arranged in increasing order A[1, n], you
want to find out whether there is an index i for which A[i] = i. Give an algorithm that runs
in time O(log n) for this problem. HINT: Consider the algorithm that compares A[dn/2e]
and dn/2e, and uses that comparison to recurse on either the first half or the second half of
the array. Prove that if A[dn/2e] > dn/2e, such an i cannot be in last n− dn/2e coordinates,
and if A[dn/2e] < dn/2e, then such an i cannot be in the first dn/2e coordinates.

5


