CSE 421 Introduction to Algorithms Midterm Exam Spring 2021

DIRECTIONS:

- Answer the problems on the exam paper.
- Justify all answers with proofs (except for Problem 1), unless the facts you need have been stated or proven in class, or in Homework, or in sample-midterm.
- If you need extra space use the back of a page or two additional pages at the end
- You have 70 minutes to complete the exam.
- Please do not turn the exam over until you are instructed to do so.
- Good Luck!

1	/30
2	/20
3	/20
4	/20
Total	/90

(25 points, 5 each) For each of the following problems answer True or False (no proof needed).
(a) n + log n = Ω(n log n).

- (b) Every (not necessarily connected) graph with n edges has exactly one cycle.
- (c) In every DAG with n vertices, for any $1 \le k \le n-1$, there are at most k vertices with out-degree at least n-k.
- (d) A graph G has exactly three connected components if and only if there are exactly two cuts $(S_1, V S_1), (S_2, V S_2)$ of G with no edges in them (i.e., every other cut has at least one edge).
- (e) The Kruskal's algorithm runs in time $\Theta(m \log m)$.
- (f) If $T(n) \le 27T(n/9) + n^3$, T(1) = 1, then $T(n) = O(n^3 \log n)$.

2. Given a connected undirected weighted graph G = (V, E) where every edge $e \in E$ has a *positive integer* weight w_e such that the sum of weights of all edges is at most 4m, i.e., $\sum_{e \in E} w_e \leq 4m$, and a vertex $s \in V$, design an O(m + n) time algorithm that outputs the length of the shortest path from s to all vertices of V. Recall that in a weighted graph the length of a path P with edges e_1, \ldots, e_k is $w_{e_1} + \cdots + w_{e_k}$.

3. Given sorted array of n distinct even integers, arranged in increasing order A[1, n], you want to find out whether there is an index i for which A[i] = 2i. Give an algorithm that runs in time $O(\log n)$ and outputs "yes" if such an i exists and "no" otherwise. (Recall that an integer is even if it is a multiple of 2).

4. Show that there are at least $3 \cdot 2^{n-1}$ ways to properly color vertices of a tree T with n vertices using 3 colors, i.e., to color vertices with three colors such that any two adjacent vertices have distinct colors. Note that it can be shown that there are exactly $3 \cdot 2^{n-1}$ ways to properly color vertices of T with 3 colors but in this problem, to receive full credit, it is enough prove the "at least" part.

For example, there are (at least) $3 \cdot 2^2 = 12$ ways to color a tree with 3 vertices as show below:

