NAME: \qquad

CSE 421
Introduction to Algorithms Midterm Exam Spring 2021

DIRECTIONS:

- Answer the problems on the exam paper.
- Justify all answers with proofs (except for Problem 1), unless the facts you need have been stated or proven in class, or in Homework, or in sample-midterm.
- If you need extra space use the back of a page or two additional pages at the end
- You have 70 minutes to complete the exam.

1	$/ 30$
2	$/ 20$
3	$/ 20$
4	$/ 20$
Total	$/ 90$

- Please do not turn the exam over until you are instructed to do so.
- Good Luck!

1. (25 points, 5 each) For each of the following problems answer True or False (no proof needed). (a) $n+\log n=\Omega(n \log n)$.
(b) Every (not necessarily connected) graph with n edges has exactly one cycle.
(c) In every DAG with n vertices, for any $1 \leq k \leq n-1$, there are at most k vertices with out-degree at least $n-k$.
(d) A graph G has exactly three connected components if and only if there are exactly two cuts $\left(S_{1}, V-S_{1}\right),\left(S_{2}, V-S_{2}\right)$ of G with no edges in them (i.e., every other cut has at least one edge).
(e) The Kruskal's algorithm runs in time $\Theta(m \log m)$.
(f) If $T(n) \leq 27 T(n / 9)+n^{3}, T(1)=1$, then $T(n)=O\left(n^{3} \log n\right)$.
2. Given a connected undirected weighted graph $G=(V, E)$ where every edge $e \in E$ has a positive integer weight w_{e} such that the sum of weights of all edges is at most $4 m$, i.e., $\sum_{e \in E} w_{e} \leq 4 m$, and a vertex $s \in V$, design an $O(m+n)$ time algorithm that outputs the length of the shortest path from s to all vertices of V. Recall that in a weighted graph the length of a path P with edges e_{1}, \ldots, e_{k} is $w_{e_{1}}+\cdots+w_{e_{k}}$.
3. Given sorted array of n distinct even integers, arranged in increasing order $A[1, n]$, you want to find out whether there is an index i for which $A[i]=2 i$. Give an algorithm that runs in time $O(\log n)$ and outputs "yes" if such an i exists and "no" otherwise. (Recall that an integer is even if it is a multiple of 2).
4. Show that there are at least $3 \cdot 2^{n-1}$ ways to properly color vertices of a tree T with n vertices using 3 colors, i.e., to color vertices with three colors such that any two adjacent vertices have distinct colors. Note that it can be shown that there are exactly $3 \cdot 2^{n-1}$ ways to properly color vertices of T with 3 colors but in this problem, to receive full credit, it is enough prove the "at least" part.
For example, there are (at least) $3 \cdot 2^{2}=12$ ways to color a tree with 3 vertices as show below:

