CSE 421

Greedy Algorithms

Shayan Oveis Gharan

An Advice on Problem Solving

If possible, try not to use arguments of the following type in
proofs:

 The Bestcase s

e The worstcase is

These arguments need rigorous justification, and they are
usually the main reason that your proofs can become
wrong, or unjustified.

Interval Scheduling

« Job j starts at s(j) and finishes at f(j).
« Two jobs compatible if they don’t overlap.
« Goal: find maximum subset of mutually compatible jobs.

Time

Possible Approaches for Inter Sched

Sort the jobs in some order. Go over the jobs and take as much as
possible provided it is compatible with the jobs already taken.

[Earliest start time] Consider jobs in ascending order of start time s;.
[Earliest finish time] Consider jobs in ascending order of finish time f;.

[Shortest interval] Consider jobs in ascending order of interval length
fi-s;.

[Fewest conflicts] For each job, count the number of conflicting jobs
¢;. Schedule in ascending order of conflicts c;.

Greedy Alg: Earliest Finish Time

Consider jobs in increasing order of finish time. Take each job
provided it's compatible with the ones already taken.

Sort jobs by finish times so that £(1) < £(2) < ... < f£(n).
A< @
for j =1 ton {
if (job j compatible with A4)
A< AuU{j}
}

return A

Implementation. O(n log n).
« Remember job j* that was added last to A.
« Job jis compatible with A if s(j) > f(j*)-.

Greedy Alg: Example

B

H . Time

Correctness

Theorem: Greedy algorithm is optimal.

Pf. (technique: “Greedy stays ahead”)

Letiq, Iy, ... I, be jobs picked by greedy, |, 5, ... j», those in some
optimal solution in order.

We show f(i.) < f(j,) for all r, by induction onr.

Base Case: i; chosen to have min finish time, so f(iy) < f(j4).
IH: f(i,) < f(j,) for somer

1S: Since f(i,.)) < f(,) <s(r+1), jr+1 IS among the candidates
considered by greedy when it picked i, 4, & it picks min finish, so

f(ire1) < T(re1)

Observe that we must have k > m, else j,,4 is among
(nonempty) set of candidates for i, , 7

Interval Partitioning
Technique: Structural

Lecture j starts at s(j) and finishes at f(j).

Interval Partitioning

Goal: find minimum number of classrooms to schedule all lectures so that no

two occur at the same time in the same room.

Room 3

Room 4

Room 2

Room 11—

a

9

9:30 10 10:30 11 11:30 12 12:30 1

1:30

2

27:30

3:30

4:30

Time 9

Interval Partitioning

Note: graph coloring is very hard in
general, but graphs corresponding to
interval intersections are simpler.

9 930 10 1030 11 11:30 12 12:30 1 1:30 2 230 3 330 4 430 _
Time 10

A Better Schedule

This one uses only 3 classrooms

e e

9 930 10 1030 11 11:30 12 12:30 1 130 2 2:30 3 330 4 430 N
me

11

A Structural Lower-Bound on OPT

Def. The depth of a set of open intervals is the maximum
number that contain any given time.

—_—
—_—

f

o
o
—_— _— —_— _— —_— _— —_— _—

a i

9 930 10 1030 fi 1130 12 12:30] 1 130

230 3 330 4 4:30

2
:
!
g !
;
l
|
;
b

Time 12

A Structural Lower-Bound on OPT

Def. The depth of a set of open intervals is the maximum
number that contain any given time.

Key observation. Number of classrooms needed > depth.

Ex: Depth of schedule below = 3 = schedule below is optimal.

Q. Does there always exist a schedule equal to depth of

intervals?
c ci f i
b | g i
, a_ I e h
9 930 10 1030 1 1130, 12 1230 1 130 2 230 3 330 4 430

Time 13

A Greedy Algorithm

Greedy algorithm: Consider lectures in increasing order of
start time: assign lecture to any compatible classroom.

Sort intervals by starting time so that s; < s, < ... £ s,.
d «< 0

for j =1 to n {
if (lect j is compatible with some classroom k, 1< k<d)

schedule lecture j in classroom k
else

allocate a new classroom d + 1
schedule lecture j in classroom d + 1
d« d+1

Implementation: Exercise!

14

Correctness

Observation: Greedy algorithm never schedules two
Incompatible lectures in the same classroom.

Theorem: Greedy algorithm is optimal.
Pf (exploit structural property).
Let d = number of classrooms that the greedy algorithm allocates.

Classroom d is opened because we needed to schedule a job,
say |, that is incompatible with all d-1 previously used classrooms.

Since we sorted by start time, all these incompatibilities are
caused by lectures that start no later than s(j).

Thus, we have d lectures overlapping at time s(j) + €, i.e.
depth > d
“OPT Observation” = all schedules use > depth classrooms,

so d = depth and greedy is optimal - {5

Minimum Spanning Tree Problem

Minimum Spanning Tree (MST)

Given a connected graph ¢ = (V, E) with real-valued edge
weights c., an MST is a subset of the edges T < E such that

T is a spanning tree whose sum of edge weights is
minimized.

4/‘

57(%7# P
P J

G = (V,E) ¢(T) =) o =50

eeT

/

.

17

Cuts

In a graph ¢ = (V,E) a cut is a bipartition of V into sets S,V — §
forsome S € V. We show it by (§,V —5)

An edge e = {u, v}isin the cut (S,V —5) if exactly one of u,vis in
S.

S V-S

Obs: If G is connected then there is at least one edge in every

cut. 18

Cycles and Cuts

Claim. A cycle crosses a cut (from S to V-S) an even
number of times.

Pf. (by picture)

19

Properties of the OPT

Simplifying assumption: All edge costs c, are distinct.

Cut property: Let S be any subset of nodes (called a cut), and let
e be the min cost edge with exactly one endpointin S. Then
every MST contains e.

Cycle property. Let C be any cycle, and let f be the max cost
edge belonging to C. Then no MST contains f.

7

2\./0

5

red edge is in the MST Green edge is not in the MST
20

Cut Property: Proof

Simplifying assumption: All edge costs c, are distinct.

Cut property. Let S be any subset of nodes, and let e be the min
cost edge with exactly one endpoint in S. Then T* contains e.

Pf. By contradiction
Suppose e = {u,v} does not belong to T*.

Adding e to T* creates a cycle C in T™.

C crosses S even number of times=> there exists another edge,
say f, that leaves S.

T = T*u{e} — {f}is also a spanning tree.
Since ¢, < ¢, c(T) < c(T").
This is a contradiction.

Cycle Property: Proof

Simplifying assumption: All edge costs c, are distinct.

Cycle property: Let C be any cycle in G, and let f be the max cost
edge belonging to C. Then the MST T* does not contain f.

Pf. (By contradiction)
Suppose f belongs to T".
Deleting f from T* cuts T* into two connected components.

There exists another edge, say e, that is in the cycle and
connects the components.

T =T "u{e} — {f}is also a spanning tree.
Since ¢, < c;, c(T) < c(T").
This is a contradiction.

Kruskal's Algorithm [1956]

Kruskal (G, c) {

Sort edges weights so that c¢; < ¢, <
T<0o

IA
N
8

foreach (u€V) make a set containing singleton {u}

for i =1 tom
Let (u,v) = e;
if (u and v are in different sets) {
T « TU{ei}
merge the sets containing u and v

}

return T

Kruskal’'s Algorithm: Pf of Correctness

Consider edges in ascending order of weight.

Case 1: If adding e to T creates a cycle, discard e according to
cycle property.

Case 2: Otherwise, insert e = (u, v) into T according to cut
property where S = set of nodes in u's connected component.

Case 1 Case 2

Implementation: Kruskal's Algorithm

Implementation. Use the union-find data structure.
« Build set T of edges in the MST.
« Maintain a set for each connected component.
 O(m log n) for sorting and O(m log n) for union-find

Kruskal (G, c) {

Sort edges weights so that ¢c; < ¢, < ...
T<0Q

IA
N
8

foreach (u€V) make a set containing singleton {u}

for i =1 tom
Let (u,v) = e;
if (u and v are in different sets) {
T « TU{ei}
merge the sets containing u and v

}

return T

