CSE 421: Introduction to Algorithms

Greedy Algorithms

Shayan Oveis Gharan

HW1 Grade

- Q: I received low grade in HW1 what should I do?
- Understand what was your mistake. Did you understand the problem statement correctly?
- Show up to office hours and ask for hints or to explain your solution
- Review materials of 311 on proofs/induction
- Do exercises from the book/Problem Solving Sessions
- Q: My HW1 grade is low, will I be able to receive 4.0?
- Yes! I look at your progress. Many students are behind at beginning but by practice they catch up and receive 4.0
- Q: I have filled out a regrade request, but was not convinced, what should I do?
- Show up to my office hour and discuss your solution

DAGs: A Sufficient Condition

Lemma: If G has a topological order, then G is a DAG.

Pf. (by contradiction)

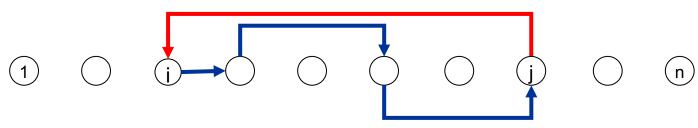
Suppose that G has a topological order 1,2,...,n and that G also has a directed cycle C.

Let i be the lowest-indexed node in C, and let j be the node just before i; thus (j, i) is an (directed) edge.

By our choice of i, we have i < j.

On the other hand, since (j, i) is an edge and 1, ..., n is a topological order, we must have j < i, a contradiction

the directed cycle C



the supposed topological order: 1,2,...,n

DAGs: A Sufficient Condition

G has a topological order ? G is a DAG

A Characterization of DAGs

G has a topological order

G is a DAG

Every DAG has a source node

Lemma: If G is a DAG, then G has a node with no incoming edges (i.e., a source).

Pf. (by contradiction)

Suppose that G is a DAG and and it has no source

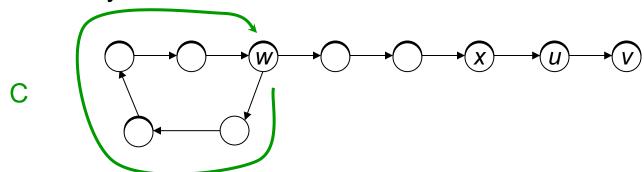
Pick any node v, and begin following edges backward from v. Since v has at least one incoming edge (u, v) we can walk backward to u.

Then, since u has at least one incoming edge (x, u), we can walk backward to x.

Is this similar to a

Repeat until we visit a node, say w, twice.

Let C be the sequence of nodes encountered between successive visits to w. C is a cycle.



previous proof?

DAG => Topological Order

Lemma: If G is a DAG, then G has a topological order

Pf. (by induction on n)

Base case: true if n = 1.

IH: Every DAG with n-1 vertices has a topological ordering.

IS: Given DAG with n > 1 nodes, find a source node v.

 $G - \{v\}$ is a DAG, since deleting v cannot create cycles.

Reminder: Always remove vertices/edges to use IH

By IH, $G - \{v\}$ has a topological ordering.

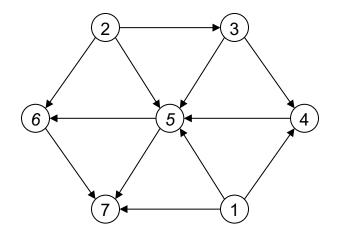
Place v first in topological ordering; then append nodes of G - { v } in topological order. This is valid since v has no incoming edges.

A Characterization of DAGs

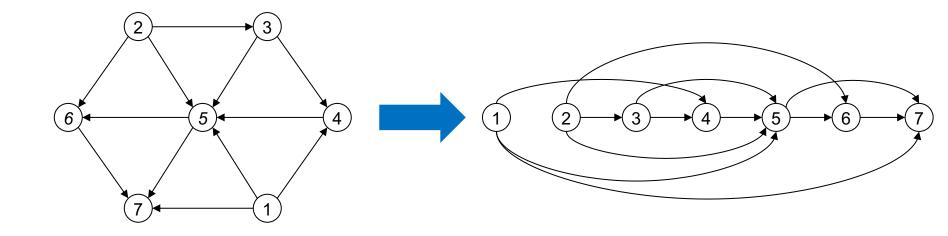
G has a topological order

G is a DAG

Topological Order Algorithm: Example



Topological Order Algorithm: Example



Topological order: 1, 2, 3, 4, 5, 6, 7

Topological Sorting Algorithm

Maintain the following:

```
count[w] = (remaining) number of incoming edges to node w
S = set of (remaining) nodes with no incoming edges
```

Initialization:

```
count[w] = 0 for all w
count[w]++ for all edges (v,w) O(m + n)
```

Main loop:

while S not empty

- remove some v from S
- make v next in topo order
 O(1) per node
- for all edges from v to some w
 O(1) per edge
 - -decrement count[w]
 - -add w to S if count[w] hits 0

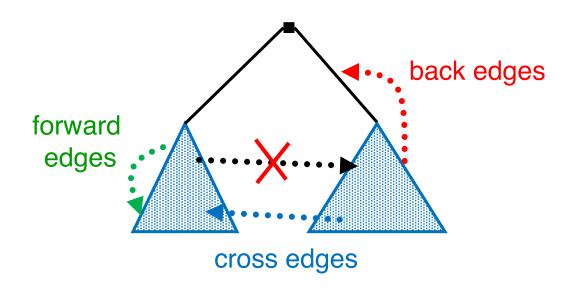
 $S = S \cup \{w\}$ for all w with count[w]=0

Correctness: clear, I hope

Time: O(m + n) (assuming edge-list representation of graph)

DFS on Directed Graphs

- Before DFS(s) returns, it visits all previously unvisited vertices reachable via directed paths from s
- Every cycle contains a back edge in the DFS tree



Summary

- Graphs: abstract relationships among pairs of objects
- Terminology: node/vertex/vertices, edges, paths, multiedges, self-loops, connected
- Representation: Adjacency list, adjacency matrix
- Nodes vs Edges: m = O(n²), often less
- BFS: Layers, queue, shortest paths, all edges go to same or adjacent layer
- DFS: recursion/stack; all edges ancestor/descendant
- Algorithms: Connected Comp, bipartiteness, topological sort

Greedy Algorithms

Greedy Strategy

Goal: Given currency denominations: 1, 5, 10, 25, 100, give change to customer using *fewest* number of coins.

Ex: 34¢.

Cashier's algorithm: At each iteration, give the *largest* coin valued ≤ the amount to be paid.

Ex: \$2.89.

Greedy is not always Optimal

Observation: Greedy algorithm is sub-optimal for US postal denominations: 1, 10, 21, 34, 70, 100, 350, 1225, 1500.

Counterexample. 140¢.

Greedy: 100, 34, 1, 1, 1, 1, 1, 1.

Optimal: 70, 70.

Lesson: Greedy is short-sighted. Always chooses the most attractive choice at the moment. But this may lead to a deadend later.

Greedy Algorithms Outline

Pros

- Intuitive
- Often simple to design (and to implement)
- Often fast

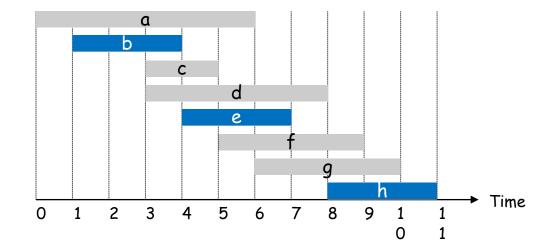
Cons

Often incorrect!

Proof techniques:

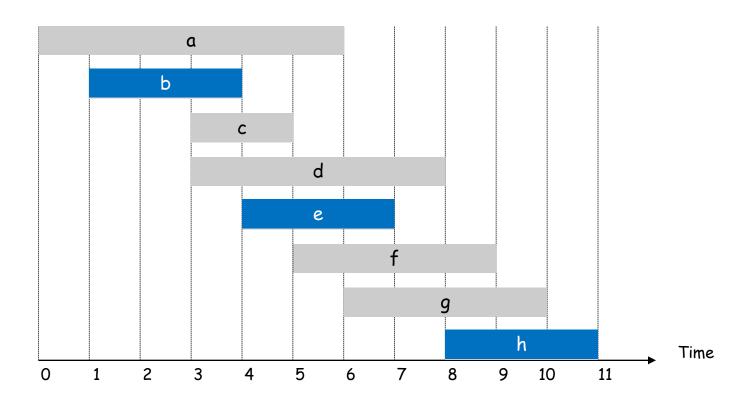
- Stay ahead
- Structural
- Exchange arguments

Interval Scheduling



Interval Scheduling

- Job j starts at s(j) and finishes at f(j).
- Two jobs compatible if they don't overlap.
- Goal: find maximum subset of mutually compatible jobs.



Greedy Strategy

Sort the jobs in some order. Go over the jobs and take as much as possible provided it is compatible with the jobs already taken.

Main question:

- What order?
- Does it give the Optimum answer?
- Why?

Possible Approaches for Inter Sched

Sort the jobs in some order. Go over the jobs and take as much as possible provided it is compatible with the jobs already taken.

[Earliest start time] Consider jobs in ascending order of start time s_j.

[Earliest finish time] Consider jobs in ascending order of finish time f_j.

[Shortest interval] Consider jobs in ascending order of interval length $f_j - s_j$.

[Fewest conflicts] For each job, count the number of conflicting jobs c_j . Schedule in ascending order of conflicts c_j .

Greedy Alg: Earliest Finish Time

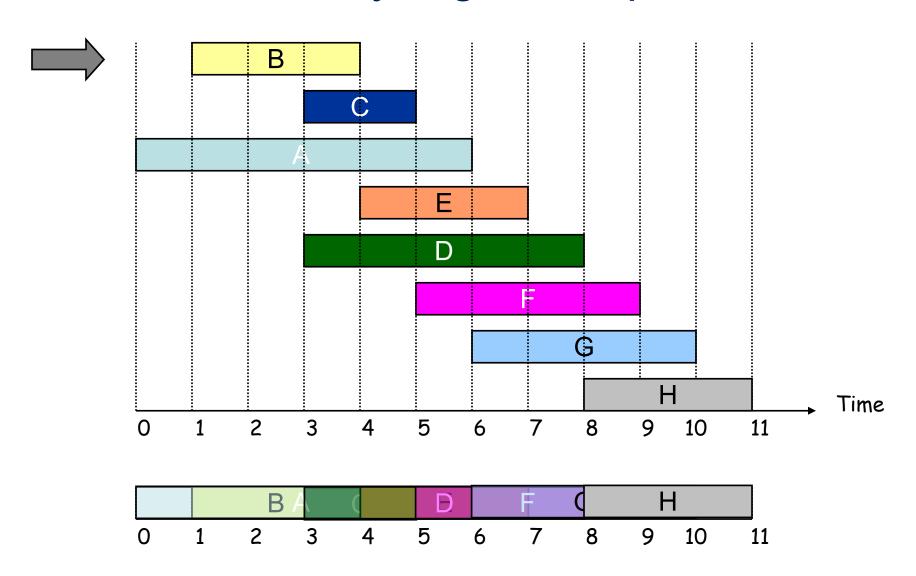
Consider jobs in increasing order of finish time. Take each job provided it's compatible with the ones already taken.

```
Sort jobs by finish times so that f(1) \le f(2) \le \ldots \le f(n). A \leftarrow \emptyset for j = 1 to n { if (job j compatible with A) A \leftarrow A \cup \{j\} } return A
```

Implementation. O(n log n).

- Remember job j* that was added last to A.
- Job j is compatible with A if $s(j) \ge f(j^*)_*$.

Greedy Alg: Example



Correctness

Theorem: Greedy algorithm is optimal.

Pf: (technique: "Greedy stays ahead")

Let i_1 , i_2 , ... i_k be jobs picked by greedy, j_1 , j_2 , ... j_m those in some optimal solution in order.

We show $f(i_r) \le f(j_r)$ for all r, by induction on r.

Base Case: i_1 chosen to have min finish time, so $f(i_1) \le f(j_1)$.

IH: $f(i_r) \le f(j_r)$ for some r

IS: Since $f(i_r) \le f(j_r) \le s(j_{r+1})$, j_{r+1} is among the candidates considered by greedy when it picked i_{r+1} , & it picks min finish, so $f(i_{r+1}) \le f(j_{r+1})$

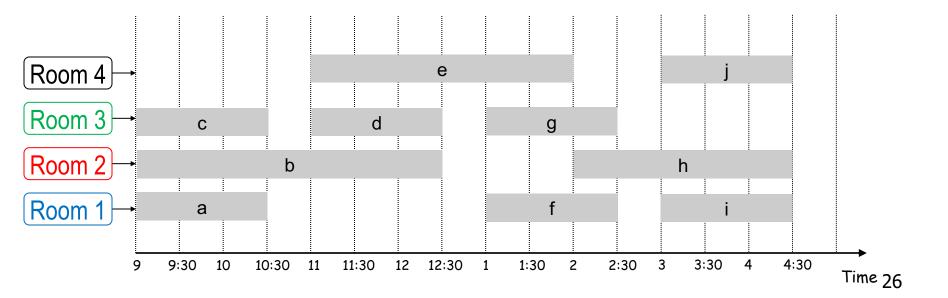
Observe that we must have $k \ge m$, else j_{k+1} is among (nonempty) set of candidates for i_{k+1}

Interval Partitioning Technique: Structural

Interval Partitioning

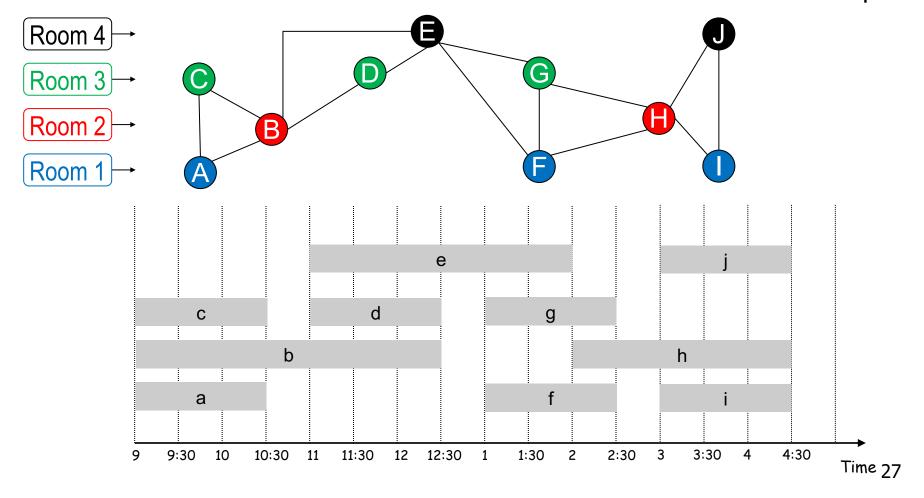
Lecture j starts at s(j) and finishes at f(j).

Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.



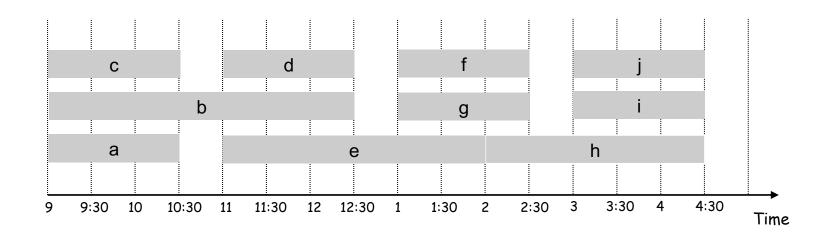
Interval Partitioning

Note: graph coloring is very hard in general, but graphs corresponding to interval intersections are simpler.



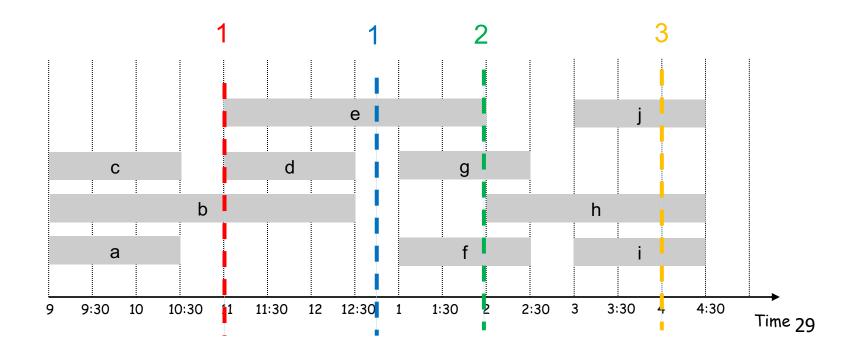
A Better Schedule

This one uses only 3 classrooms



A Structural Lower-Bound on OPT

Def. The depth of a set of open intervals is the maximum number that contain any given time.



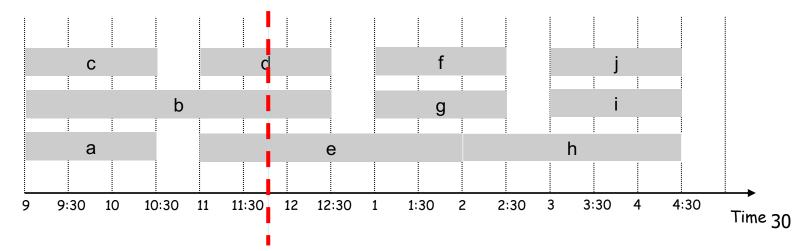
A Structural Lower-Bound on OPT

Def. The depth of a set of open intervals is the maximum number that contain any given time.

Key observation. Number of classrooms needed ≥ depth.

Ex: Depth of schedule below = $3 \Rightarrow$ schedule below is optimal.

Q. Does there always exist a schedule equal to depth of intervals?



A Greedy Algorithm

Greedy algorithm: Consider lectures in increasing order of start time: assign lecture to any compatible classroom.

Implementation: Exercise!

Correctness

Observation: Greedy algorithm never schedules two incompatible lectures in the same classroom.

Theorem: Greedy algorithm is optimal.

Pf (exploit structural property).

Let d = number of classrooms that the greedy algorithm allocates.

Classroom d is opened because we needed to schedule a job, say j, that is incompatible with all d-1 previously used classrooms.

Since we sorted by start time, all these incompatibilities are caused by lectures that start no later than s(j).

Thus, we have d lectures overlapping at time $s(j) + \epsilon$, i.e. depth \geq d

"OPT Observation" \Rightarrow all schedules use \geq depth classrooms, so d = depth and greedy is optimal •

32