
CSE 421: Introduction
to Algorithms

Greedy Algorithms
Shayan Oveis Gharan

1

HW1 Grade
Q: I received low grade in HW1 what should I do?
• Understand what was your mistake. Did you understand

the problem statement correctly?
• Show up to office hours and ask for hints or to explain

your solution
• Review materials of 311 on proofs/induction
• Do exercises from the book/Problem Solving Sessions
Q: My HW1 grade is low, will I be able to receive 4.0?
• Yes! I look at your progress. Many students are behind

at beginning but by practice they catch up and receive
4.0

Q: I have filled out a regrade request, but was not
convinced, what should I do?
• Show up to my office hour and discuss your solution

2

DAGs: A Sufficient Condition
Lemma: If G has a topological order, then G is a DAG.

Pf. (by contradiction)
Suppose that G has a topological order 1,2, … , 𝑛 and that G also
has a directed cycle C.
Let 𝑖 be the lowest-indexed node in C, and let 𝑗 be the node just
before 𝑖; thus (𝑗, 𝑖) is an (directed) edge.
By our choice of 𝑖, we have 𝑖 < 𝑗.
On the other hand, since (𝑗, 𝑖) is an edge and 1,… , 𝑛 is a
topological order, we must have 𝑗 < 𝑖, a contradiction

3

1 i j n

the directed cycle C

the supposed topological order: 1,2,…,n

DAGs: A Sufficient Condition

4

G has a
topological order G is a DAG?

A Characterization of DAGs

5

G has a
topological order G is a DAG

Every DAG has a source node
Lemma: If G is a DAG, then G has a node with no incoming edges (i.e.,
a source).

Pf. (by contradiction)
Suppose that G is a DAG and and it has no source
Pick any node v, and begin following edges backward from v. Since v
has at least one incoming edge (u, v) we can walk backward to u.
Then, since u has at least one incoming edge (x, u), we can walk
backward to x.
Repeat until we visit a node, say w, twice.
Let C be the sequence of nodes encountered between successive visits
to w. C is a cycle.

6

w x u v

C
w x u v

Is this similar to a
previous proof?

DAG => Topological Order
Lemma: If G is a DAG, then G has a topological order

Pf. (by induction on n)
Base case: true if n = 1.

IH: Every DAG with n-1 vertices has a topological ordering.

IS: Given DAG with 𝑛 > 1 nodes, find a source node v.
𝐺 − { 𝑣 } is a DAG, since deleting v cannot create cycles.

By IH, 𝐺 − { 𝑣 } has a topological ordering.
Place v first in topological ordering; then append nodes of G - { v }

in topological order. This is valid since v has no incoming edges.

7

Reminder: Always remove
vertices/edges to use IH

A Characterization of DAGs

8

G has a
topological order G is a DAG

9

Topological Order Algorithm: Example

2 3

6 5 4

7 1

10

Topological order: 1, 2, 3, 4, 5, 6, 7

Topological Order Algorithm: Example

2 3

6 5 4

7 1

1 2 3 4 5 6 7

Topological Sorting Algorithm
Maintain the following:

count[w] = (remaining) number of incoming edges to node w
S = set of (remaining) nodes with no incoming edges

Initialization:
count[w] = 0 for all w
count[w]++ for all edges (v,w) O(m + n)
S = S È {w} for all w with count[w]=0

Main loop:
while S not empty

• remove some v from S
• make v next in topo order O(1) per node
• for all edges from v to some w O(1) per edge

–decrement count[w]
–add w to S if count[w] hits 0

Correctness: clear, I hope
Time: O(m + n) (assuming edge-list representation of graph)

11

DFS on Directed Graphs
• Before DFS(s) returns, it visits all previously unvisited

vertices reachable via directed paths from s

• Every cycle contains a back edge in the DFS tree

12

forward
edges

back edges

cross edges

Summary
• Graphs: abstract relationships among pairs of objects

• Terminology: node/vertex/vertices, edges, paths, multi-
edges, self-loops, connected

• Representation: Adjacency list, adjacency matrix

• Nodes vs Edges: m = O(n2), often less

• BFS: Layers, queue, shortest paths, all edges go to same
or adjacent layer

• DFS: recursion/stack; all edges ancestor/descendant

• Algorithms: Connected Comp, bipartiteness, topological
sort 13

Greedy Algorithms

Greedy Strategy

Goal: Given currency denominations: 1, 5, 10, 25, 100,
give change to customer using fewest number of coins.

Ex: 34¢.

Cashier's algorithm: At each iteration, give the largest
coin valued ≤ the amount to be paid.

Ex: $2.89.

15

Greedy is not always Optimal

Observation: Greedy algorithm is sub-optimal for US
postal denominations: 1, 10, 21, 34, 70, 100, 350, 1225, 1500.

Counterexample. 140¢.
Greedy: 100, 34, 1, 1, 1, 1, 1, 1.
Optimal: 70, 70.

Lesson: Greedy is short-sighted. Always chooses the most
attractive choice at the moment. But this may lead to a dead-
end later.

16

Greedy Algorithms Outline

Pros
• Intuitive
• Often simple to design (and to implement)
• Often fast

Cons
• Often incorrect!

Proof techniques:
• Stay ahead
• Structural
• Exchange arguments

17

Interval Scheduling

Time
0 1 2 3 4 5 6 7 8 9 1

0
1
1

f
g

h

e

a
b

c
d

h

e

b

Interval Scheduling

• Job j starts at 𝑠(𝑗) and finishes at 𝑓(𝑗).
• Two jobs compatible if they don’t overlap.
• Goal: find maximum subset of mutually compatible jobs.

19
Time

0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

h

e

b

Greedy Strategy

Sort the jobs in some order. Go over the jobs and take as
much as possible provided it is compatible with the jobs
already taken.

Main question:

• What order?

• Does it give the Optimum answer?

• Why?

20

Possible Approaches for Inter Sched

Sort the jobs in some order. Go over the jobs and take as much as
possible provided it is compatible with the jobs already taken.

[Earliest start time] Consider jobs in ascending order of start time sj.

[Earliest finish time] Consider jobs in ascending order of finish time fj.

[Shortest interval] Consider jobs in ascending order of interval length
fj - sj.

[Fewest conflicts] For each job, count the number of conflicting jobs
cj. Schedule in ascending order of conflicts cj.

21

Greedy Alg: Earliest Finish Time

Consider jobs in increasing order of finish time. Take each job
provided it’s compatible with the ones already taken.

Implementation. O(n log n).
• Remember job j* that was added last to A.
• Job j is compatible with A if s(j) ³ 𝑓(𝑗∗)*.

22

Sort jobs by finish times so that f(1) £ f(2) £ ... £ f(n).
𝑨 ← 	∅
for j = 1 to n {
 if (job j compatible with 𝑨)
 𝑨 ← 𝑨 ∪ {𝒋}
}
return 𝑨

Greedy Alg: Example

23

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

0 1 2 3 4 5 6 7 8 9 10 11
B CA ED F G H

Correctness

Theorem: Greedy algorithm is optimal.

Pf: (technique: “Greedy stays ahead”)
Let i1, i2, ... ik be jobs picked by greedy, j1, j2, ... jm those in some
optimal solution in order.
We show f(ir) £ f(jr) for all r, by induction on r.

Base Case: i1 chosen to have min finish time, so f(i1) £ f(j1).
IH: 𝑓(𝑖𝑟) £ 𝑓 𝑗* for some r
IS: Since 𝑓 𝑖* ≤ 𝑓(𝑗𝑟)£ 𝑠(𝑗*+,), jr+1 is among the candidates
considered by greedy when it picked ir+1, & it picks min finish, so
f(ir+1) £ f(jr+1)

Observe that we must have 𝑘 ≥ 𝑚, else jk+1 is among
(nonempty) set of candidates for ik+1 24

Interval Partitioning
Technique: Structural

Interval Partitioning

Lecture j starts at s(j) and finishes at f(j).
Goal: find minimum number of classrooms to schedule all lectures so that no
two occur at the same time in the same room.

26Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30

Room 1
Room 2
Room 3
Room 4

Interval Partitioning

27Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30

Room 1
Room 2
Room 3
Room 4

C

B
A

E
D G

F

J

H

I

Note: graph coloring is very hard in
general, but graphs corresponding to

interval intersections are simpler.

A Better Schedule

This one uses only 3 classrooms

28

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

A Structural Lower-Bound on OPT

Def. The depth of a set of open intervals is the maximum
number that contain any given time.

29Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30

1 1 2 3

A Structural Lower-Bound on OPT

Def. The depth of a set of open intervals is the maximum
number that contain any given time.

Key observation. Number of classrooms needed ³ depth.

Ex: Depth of schedule below = 3 Þ schedule below is optimal.

Q. Does there always exist a schedule equal to depth of
intervals?

30Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

A Greedy Algorithm

Greedy algorithm: Consider lectures in increasing order of
start time: assign lecture to any compatible classroom.

Implementation: Exercise!
31

Sort intervals by starting time so that s1 £ s2 £ ... £ sn.
d ¬ 0

for j = 1 to n {
 if (lect j is compatible with some classroom k, 𝟏 ≤ 𝒌 ≤ 𝒅)
 schedule lecture j in classroom k
 else
 allocate a new classroom d + 1
 schedule lecture j in classroom d + 1
 d ¬ d + 1
}

Correctness

Observation: Greedy algorithm never schedules two
incompatible lectures in the same classroom.

Theorem: Greedy algorithm is optimal.
Pf (exploit structural property).
Let d = number of classrooms that the greedy algorithm allocates.
Classroom d is opened because we needed to schedule a job,
say j, that is incompatible with all d-1 previously used classrooms.
Since we sorted by start time, all these incompatibilities are
caused by lectures that start no later than s(j).
Thus, we have d lectures overlapping at time 𝑠 𝑗 + 𝜖, i.e.

depth ³ d
“OPT Observation” Þ all schedules use ³ depth classrooms,
so d = depth and greedy is optimal ▪ 32

