CSE 421: Introduction to Algorithms

DFS - DAGs
Shayan Oveis Gharan
Depth First Search

Follow the first path you find as far as you can go; back up to last unexplored edge when you reach a dead end, then go as far you can.

Naturally implemented using recursive calls or a stack.
DFS(s) – Recursive version

Global Initialization: mark all vertices undiscovered

DFS(v)
- Mark v **discovered**
- for each edge \{v,x\}
 - if (x is undiscovered)
 - Mark x **discovered**
 - DFS(x)
- Mark v **full-discovered**
Suppose edge lists at each vertex are sorted alphabetically.
DFS(A)

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)
A (B,J)
B (A,C,J)

\[st[] = \{1,2\} \]
DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
- (Edge list)
 - A (B,J)
 - B (A,C,J)
 - C (B,D,G,H)

st[] = {1,2,3}
DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
- (Edge list)
 - A (B,J)
 - B (A,C,J)
 - C (B,D,G,H)
 - D (C,E,F)

\[
st[] = \{1,2,3,4\} \]
DFS(A)

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)
E (D,F)

st[] = {1,2,3,4,5}
DFS(A)

Call Stack:
(Edge list)
A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)
E (D,F)
F (D,E,G)

st[] =
{1,2,3,4,5,6}
DFS(A)

Call Stack:
(Edge list)
A (B,J)
B (A,C,J)
C (B,D,G,H)
D (G,E,F)
E (D,F)
F (D,E,G)
G (C,F)

st[] = {1,2,3,4,5,6,7}

Color code:
- undiscovered
- discovered
- fully-explored
DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
(Edge list)
- A (B, J)
- B (A, C, J)
- C (B, D, G, H)
- D (C, E, F)
- E (D, F)
- F (D, E, G)
- G (C, F)

st[] =
{1, 2, 3, 4, 5, 6, 7}
DFS(A)

Call Stack:
(Edge list)

A (B, J)
B (A, C, J)
C (B, D, G, H)
D (G, E, F)
E (D, F)
F (D, E, G)

st[] = {1, 2, 3, 4, 5, 6}

Color code:
- undiscovered
- discovered
- fully-explored
DFS(A)

Color code:

- undiscovered
- discovered
- fully-explored

Call Stack:

- (Edge list)
 - A (B, J)
 - B (A, C, J)
 - C (B, D, G, H)
 - D (C, E, F)
 - E (D, F)

st[] = {1, 2, 3, 4, 5}
DFS(A)

Call Stack:
(Edge list)
A (B, J)
B (A, C, J)
C (B, D, G, H)
D (G, E, F)

st[] = {1, 2, 3, 4}

Color code:
undiscovered
discovered
fully-explored
DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
(Edge list)
A (B,J)
B (A,C,J)
C (B,D,G,H)

st[] = \{1,2,3\}
DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
- (Edge list)
 - A (B,J)
 - B (A,C,J)
 - C (B,D,G,H)
 - H (C,I,J)

\[st[] = \{1,2,3,8\} \]
DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
- (Edge list)
 - A (B, J)
 - B (A, C, J)
 - C (B, D, G, H)
 - H (C, I, J)
 - I (H)

st[] = {1, 2, 3, 8, 9}
DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
- (Edge list)
 - A (B, J)
 - B (A, C, J)
 - C (B, D, G, H)
 - H (C, I, J)

\[st[] = \{1, 2, 3, 8\}\]
DFS(A)

Call Stack:
(Edge list)
A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)

st[] =
{1,2,3,8,10}
DFS(A)

Call Stack:
(Edge list)
A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)
K (J,L)

st[] = {1,2,3,8,10,11}

Color code:
- undiscovered
- discovered
- fully-explored
DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
- (Edge list)
A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)
K (J,L)
L (J,K,M)

st[] =
{1,2,3,8,10
,11,12}
DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
(Edge list)
- A (B, J)
- B (A, C, J)
- C (B, D, G, H)
- H (C, I, J)
- J (A, B, H, K, L)
- K (J, L)
- L (J, K, M)
- M (L)

st[] = {1, 2, 3, 8, 10, 11, 12, 13}
DFS(A)

Call Stack:
(Edge list)
A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)
K (J,L)
L (J,K,M)

st[] = {1,2,3,8,10,11,12}
DFS(A)

Call Stack:
(Edge list)
A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)
K (J,L)

st[] = {1,2,3,8,10,11}

Color code:
- undiscovered
- discovered
- fully-explored
DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
- (Edge list)
- A (B,J)
- B (A,C,J)
- C (B,D,G,H)
- H (C,I,J)
- J (A,B,H,K,L)

st[] = {1,2,3,8,10}
DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
(Edge list)
- A (B, J)
- B (A, C, J)
- C (B, D, G, H)
- H (C, I, J)
- J (A, B, H, K, L)

\[st[] = \{1, 2, 3, 8, 10\} \]
DFS(A)

Call Stack:
(Edge list)
A (B,J)
B (A,C,J)
C (B,D,G,H)

st[] = {1,2,3}
DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
(Edge list)
A (B,J)
B (A,C,J)

st[] = {1,2}
DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
- (Edge list)
- A (B,J)
- B (A,C,J)

st[] = {1,2}
DFS(A)

Call Stack:
(Edge list)
A (B, J)

st[] =
{1}
DFS(A)

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)
A (B, J)

st[] =
{1}
DFS(A)

Call Stack: (Edge list)

TA-DA!!

st[] = {}

Color code:
- undiscovered
- discovered
- fully-explored

A,1
B,2
J,10
C,3
G,7
H,8
K,11
L,12
M,13
D,4
E,5
F,6
I,9

Parent Map:
- A: B, J
- B: C, G, H
- C: D, F
- D: E
- G: H
- H: I
- J: K
- K: L
- L: M
DFS(A)

Edge code:
- Tree edge
- Back edge

Diagram of DFS traversal:
DFS(A)

Edge code:
- Tree edge
- Back edge
- No Cross Edges!
Properties of (undirected) DFS

Like BFS(s):
• DFS(s) visits x iff there is a path in G from s to x
 So, we can use DFS to find connected components
• Edges into then-undiscovered vertices define a tree – the "depth first spanning tree" of G

Unlike the BFS tree:
• The DFS spanning tree isn't minimum depth
• Its levels don't reflect min distance from the root
• Non-tree edges never join vertices on the same or adjacent levels
Non-Tree Edges in DFS

All non-tree edges join a vertex and one of its descendants/ancestors in the DFS tree

BFS tree ≠ DFS tree, but, as with BFS, DFS has found a tree in the graph s.t. non-tree edges are "simple" – only descendant/ancestor
Non-Tree Edges in DFS

Obs: During DFS(x) every vertex marked visited is a descendant of x in the DFS tree

Lemma: For every edge \{x, y\}, if \{x, y\} is not in DFS tree, then one of x or y is an ancestor of the other in the tree.

Proof:
One of x or y is discovered first, suppose WLOG that x is discovered first and therefore DFS(x) was called before DFS(y)

Since \{x, y\} is not in DFS tree, y was fully-explored when the edge \{x, y\} was examined during DFS(x)

Therefore y was discovered during the call to DFS(x) so y is a descendant of x by observation.
DAGs and Topological Ordering
Directed Acyclic Graphs (DAG)

A DAG is a directed acyclic graph, i.e., one that contains no directed cycles.

Def: A topological order of a directed graph $G = (V, E)$ is an ordering of its nodes as v_1, v_2, \ldots, v_n so that for every edge (v_i, v_j) we have $i < j$.

![Diagram of a DAG and a topological ordering](image-url)
DAGs: A Sufficient Condition

Lemma: If G has a topological order, then G is a DAG.

Pf. (by contradiction)
Suppose that G has a topological order 1,2,...,n and that G also has a directed cycle C.
Let \(i \) be the lowest-indexed node in C, and let \(j \) be the node just before \(i \); thus \((j, i)\) is an (directed) edge.
By our choice of \(i \), we have \(i < j \).
On the other hand, since \((j, i)\) is an edge and 1, ..., \(n \) is a topological order, we must have \(j < i \), a contradiction.

![Diagram of the directed cycle C and the supposed topological order: 1,2,...,n]
DAGs: A Sufficient Condition

G has a topological order

?

G is a DAG
Every DAG has a source node

Lemma: If G is a DAG, then G has a node with no incoming edges (i.e., a source).

Pf. (by contradiction)
Suppose that G is a DAG and it has no source
Pick any node v, and begin following edges backward from v. Since v has at least one incoming edge (u, v) we can walk backward to u. Then, since u has at least one incoming edge (x, u), we can walk backward to x.
Repeat until we visit a node, say w, twice.
Let C be the sequence of nodes encountered between successive visits to w. C is a cycle.

Is this similar to a previous proof?
DAG => Topological Order

Lemma: If G is a DAG, then G has a topological order

Pf. (by induction on n)

Base case: true if n = 1.

IH: Every DAG with n-1 vertices has a topological ordering.

IS: Given DAG with \(n > 1 \) nodes, find a source node v.

\(G - \{ v \} \) is a DAG, since deleting v cannot create cycles.

By IH, \(G - \{ v \} \) has a topological ordering.

Place v first in topological ordering; then append nodes of \(G - \{ v \} \) in topological order. This is valid since v has no incoming edges.

Reminder: Always remove vertices/edges to use IH
A Characterization of DAGs

G has a topological order \iff G is a DAG
Topological Order Algorithm: Example
Topological Order Algorithm: Example

Topological order: 1, 2, 3, 4, 5, 6, 7

Induction gives Algorithms!
Topological Sorting Algorithm

Maintain the following:

\[
\text{count}[w] = \text{(remaining) number of incoming edges to node } w
\]
\[
S = \text{set of (remaining) nodes with no incoming edges}
\]

Initialization:

\[
\text{count}[w] = 0 \text{ for all } w
\]
\[
\text{count}[w]++ \text{ for all edges } (v,w) \quad \text{O}(m + n)
\]
\[
S = S \cup \{w\} \text{ for all } w \text{ with count}[w]=0
\]

Main loop:

while S not empty

- remove some v from S
- make v next in topo order \(\text{O}(1) \text{ per node} \)
- for all edges from v to some w \(\text{O}(1) \text{ per edge} \)
 - decrement count[w]
 - add w to S if count[w] hits 0

Correctness: clear, I hope

Time: \(\text{O}(m + n) \) (assuming edge-list representation of graph)
DFS on Directed Graphs

• Before DFS(s) returns, it visits all previously unvisited vertices reachable via directed paths from s

• Every cycle contains a back edge in the DFS tree
Summary

• Graphs: abstract relationships among pairs of objects

• Terminology: node/vertex/vertices, edges, paths, multi-edges, self-loops, connected

• Representation: Adjacency list, adjacency matrix

• Nodes vs Edges: m = O(n^2), often less

• BFS: Layers, queue, shortest paths, all edges go to same or adjacent layer

• DFS: recursion/stack; all edges ancestor/descendant

• Algorithms: Connected Comp, bipartiteness, topological sort
Greedy Algorithms
Greedy Strategy

Goal: Given currency denominations: 1, 5, 10, 25, 100, give change to customer using *fewest* number of coins.

Ex: 34¢.

Cashier's algorithm: At each iteration, give the *largest* coin valued ≤ the amount to be paid.

Ex: $2.89.
Greedy is not always Optimal

Observation: Greedy algorithm is sub-optimal for US postal denominations: 1, 10, 21, 34, 70, 100, 350, 1225, 1500.

Counterexample. 140¢.
Greedy: 100, 34, 1, 1, 1, 1, 1, 1.
Optimal: 70, 70.

Lesson: Greedy is short-sighted. Always chooses the most attractive choice at the moment. But this may lead to a dead-end later.
Greedy Algorithms Outline

Pros
• Intuitive
• Often simple to design (and to implement)
• Often fast

Cons
• Often incorrect!

Proof techniques:
• Stay ahead
• Structural
• Exchange arguments