CSE 421: Introduction to Algorithms

Stable Matching

Shayan Oveis Gharan
Administrativia Stuffs

HW1 is due Wednesday April 03 at 11:59PM
Please submit to Gradescope

Late Submission: Fill out an extension request in edstem.

How to submit?
• Double check your submission before the deadline!!
• Please typeset your solution if possible

Guidelines:
• Always justify your answer
• You can collaborate, but you must write solutions on your own
• Read guidelines in the website
• Sanity Check: Spell out when you use assumptions of the problem
Summary

Stable matching problem: Given \(n \) companies and \(n \) applicants, and their preferences, find a stable matching if one exists.

- **Gale-Shapley algorithm**: Guarantees to find a stable matching for any problem instance.

Q: If there are multiple stable matchings, which one does GS find?
Q: How to implement GS algorithm efficiently?
Q: How many stable matchings are there?
Company Optimal Assignments

Definition: Company c is a valid partner of applicant a if there exists some stable matching in which they are matched.

Company-optimal matching: Each company receives the best valid partner (according to its preferences).
- Not that each company receives its most favorite applicant.

Claim: All executions of GS yield a company-optimal matching, which is a stable matching!
- So, output of GS is unique!!
- No reason a priori to believe that company-optimal matching is perfect, let alone stable.
Company Optimality

Claim: GS matching S^* is company-optimal.

Proof: (by contradiction)

Suppose some company is paired with someone other than its best valid partner. Companies propose in decreasing order of preference \Rightarrow some company is rejected by a valid partner.

Let c be the first such rejection, and let a be its best valid partner.

Let S be a stable matching where c and a are matched.

In building S^*, when c is rejected, a is assigned to a company, say c' whom she prefers to c.

Let c' be a' partner in S.

In building S^*, c' is not rejected by any valid partner at the point when c is rejected by a. Thus, c' prefers a to a'.

But a prefers c' to c.

Thus (c', a) is unstable in S. since this is the first rejection by a valid partner
Company Optimality Summary

Company-optimality: In version of GS where companies propose, each company receives the best valid partner.

\[
a \text{ is a valid partner of } c \text{ if there exist some stable matching where } c \text{ and } a \text{ are paired}
\]

Q: Does company-optimality come at the expense of the applicants?
Applicant Pessimality

Applicant-pessimal assignment: Each applicant receives the worst valid partner.

Claim. GS finds applicant-pessimal stable matching S^*.

Proof.

Suppose (c, a) matched in S^*, but c is not the worst valid partner for a. There exists stable matching S in which a is paired with a company, say c', whom she likes less than c.

- Let a' be c partner in S.
- c prefers a to a'. [company-optimality of S^*]

Thus, (c, a) is an unstable in S.
Efficient Implementation

We describe $O(n^2)$ time implementation. This is linear in input size.

Representing company and applicant:
Assume companies are named $1, \ldots, n$.
Assume applicants are named $n+1, \ldots, 2n$.

Data Structure:
Maintain a list of free company, e.g., in a queue.
Maintain two arrays $\text{applicant}[c]$, and $\text{company}[a]$.
- set entry to 0 if unmatched
- if c matched to a then $\text{applicant}[c]=a$ and $\text{company}[a]=c$

Companies proposing:
For each company, maintain a list of applicants, ordered by preference.
Maintain an array $\text{count}[c]$ that counts the number of proposals made by company c.
Applicants rejecting/accepting.

Does applicant \(a \) prefer \(c \) to \(c' \)?

For each applicant, create inverse of preference list of companies.
Constant time access for each query after \(O(n) \) preprocessing per applicant. \(O(n^2) \) total reprocessing cost.

\[
\begin{array}{c|cccccccc}
\text{Pref} & 1^{\text{st}} & 2^{\text{nd}} & 3^{\text{rd}} & 4^{\text{th}} & 5^{\text{th}} & 6^{\text{th}} & 7^{\text{th}} & 8^{\text{th}} \\
\hline
8 & 3 & 7 & 1 & 4 & 5 & 6 & 2 \\
\end{array}
\]

\[
\begin{array}{c|cccccccc}
\text{Inverse} & 1^{\text{st}} & 2^{\text{nd}} & 3^{\text{rd}} & 4^{\text{th}} & 5^{\text{th}} & 6^{\text{th}} & 7^{\text{th}} & 8^{\text{th}} \\
\hline
4^{\text{th}} & 8^{\text{th}} & 2^{\text{nd}} & 5^{\text{th}} & 6^{\text{th}} & 7^{\text{th}} & 3^{\text{rd}} & 1^{\text{st}} \\
\end{array}
\]

\[
\text{for } i = 1 \text{ to } n \\
\text{for } j = 1 \text{ to } n \\
\text{inverse}[i][\text{pref}[i][j]] = j
\]

\(a_i \) prefers company 3 to 6 since \(\text{inverse}[i][3]=2 < 7=\text{inverse}[i][6] \)
Summary

• **Stable matching problem:** Given \(n \) men and \(n \) women, and their preferences, find a stable matching if one exists.

• **Gale-Shapley algorithm** guarantees to find a stable matching for any problem instance.

• **GS algorithm** finds a stable matching in \(O(n^2) \) time.

• **GS algorithm** finds man-optimal woman pessimal matching

• **Q:** How many stable matching are there?
How many stable Matchings?

We already show every instance has at least 1 stable matchings.

[Knuth’76] There are instances with about 2.24^n stable matchings for

[Karlin-O-Weber’17]: Every instance has at most 131072^n stable matchings
[Palmer-Palvolgyi’20]: Every instance has at most 4.47^n stable matchings

[Research-Question]:
Is there an “efficient” algorithm that chooses a uniformly random stable matching of a given instance.
Main Objective: Design Efficient Algorithms that finds optimum solutions in the Worst Case.
Measuring Efficiency

Time \approx \# \text{ of instructions executed in a simple programming language}

- Only simple operations (+, *, -, =, if, call, …)
- Each operation takes one time step each memory access takes one time step
- No fancy stuff (add these two matrices, copy this long string, …) built in; write it/charge for it as above
- Hashing: A hash function takes $O(n)$ to search for an element in the worst case.
Time Complexity

Problem: An algorithm can have different running time on different inputs

Solution: The complexity of an algorithm associates a number $T(N)$, the “time” the algorithm takes on problem size N.

Mathematically,

T is a function that maps positive integers giving problem size to positive integers giving number of steps
Time Complexity (N)

Worst Case Complexity: \(\text{max} \) # steps algorithm takes on any input of size \(N \)

Average Case Complexity: \(\text{avg} \) # steps algorithm takes on inputs of size \(N \)

Best Case Complexity: \(\text{min} \) # steps algorithm takes on any input of size \(N \)
Why Worst-case Inputs?

• Analysis is typically easier

• Useful in real-time applications
 e.g., space shuttle, nuclear reactors)

• Worst-case instances kick in when an algorithm is run as a module many times
 e.g., geometry or linear algebra library

• Useful when running competitions
 e.g., airline prices

• Unlike average-case no debate about the right definition
Time Complexity on Worst Case Inputs

\[T(N) = 2N \log_2 N \]
\[N \log_2 N \]
O-Notation

Given two positive functions \(f \) and \(g \):

- \(f(N) \) is \(O(g(N)) \) iff there is a constant \(c > 0 \) s.t., \(f(N) \) is eventually always \(\leq c \cdot g(N) \)

- \(f(N) \) is \(\Omega(g(N)) \) iff there is a constant \(\varepsilon > 0 \) s.t., \(f(N) \) is \(\geq \varepsilon \cdot g(N) \) for infinitely

- \(f(N) \) is \(\Theta(g(N)) \) iff there are constants \(c_1, c_2 > 0 \) so that eventually always \(c_1 g(N) \leq f(N) \leq c_2 g(N) \)
Asymptotic Bounds for common \(\text{fns} \)

- **Polynomials:**
 \(a_0 + a_1 n + \cdots + a_d n^d \) is \(O(n^d) \)

- **Logarithms:**
 \(\log_a n = O(\log_b n) \) for all constants \(a, b > 0 \)

- **Logarithms:** log grows slower than every polynomial
 For all \(x > 0 \), \(\log n = O(n^k) \)

- \(n \log n = O(n^{1.01}) \)
Efficient = Polynomial Time

An algorithm runs in polynomial time if $T(n)=O(n^d)$ for some constant d independent of the input size n.

Why Polynomial time?

If problem size grows by at most a constant factor then so does the running time

- E.g. $T(2N) \leq c(2N)^k \leq 2^k(cN^k)$
- Polynomial-time is exactly the set of running times that have this property

Typical running times are small degree polynomials, mostly less than N^3, at worst N^6, not N^{100}
Why it matters?

- #atoms in universe < 2^{240}
- Life of the universe < 2^{54} seconds
- A CPU does < 2^{30} operations a second

If every atom is a CPU, a 2^n time ALG cannot solve $n=350$ if we start at Big-Bang.

<table>
<thead>
<tr>
<th>n</th>
<th>$n \log_2 n$</th>
<th>n^2</th>
<th>n^3</th>
<th>1.5^n</th>
<th>2^n</th>
<th>$n!$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>< 1 sec</td>
<td>4 sec</td>
</tr>
<tr>
<td>30</td>
<td>< 1 sec</td>
<td>18 min</td>
</tr>
<tr>
<td>50</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>11 min</td>
<td>36 years</td>
</tr>
<tr>
<td>100</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>1 sec</td>
<td>12,892 years</td>
<td>10^{17} years</td>
</tr>
<tr>
<td>1,000</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>1 sec</td>
<td>18 min</td>
<td>very long</td>
<td>very long</td>
</tr>
<tr>
<td>10,000</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>2 min</td>
<td>12 days</td>
<td>very long</td>
<td>very long</td>
</tr>
<tr>
<td>100,000</td>
<td>< 1 sec</td>
<td>2 sec</td>
<td>3 hours</td>
<td>32 years</td>
<td>very long</td>
<td>very long</td>
</tr>
<tr>
<td>1,000,000</td>
<td>1 sec</td>
<td>20 sec</td>
<td>12 days</td>
<td>31,710 years</td>
<td>very long</td>
<td>very long</td>
</tr>
</tbody>
</table>

not only get very big, but do so *abruptly*, which likely yields erratic performance on small instances.
Why “Polynomial”?

Point is not that n^{2000} is a practical bound, or that the differences among n and $2n$ and n^2 are negligible. Rather, simple theoretical tools may not easily capture such differences, whereas exponentials are qualitatively different from polynomials, so more amenable to theoretical analysis.

- “My problem is in P” is a starting point for a more detailed analysis
- “My problem is not in P” may suggest that you need to shift to a more tractable variant