CSE 421

Polynomial Time Reductions NP Completeness

Shayan Oveis Gharan

P, NP, EXP

P. Decision problems for which there is a poly-time algorithm.

EXP. Decision problems for which there is an exponential-time algorithm.
NP. Decision problems for which there is a poly-time certifier.

Claim. $\mathrm{P} \subseteq \mathrm{NP}$.
Pf. Consider any problem X in P .
By definition, there exists a poly-time algorithm $A(x)$ that solves X. Certificate: $\mathrm{t}=$ empty string, certifier $\mathrm{C}(\mathrm{x}, \varnothing)=\mathrm{A}(\mathrm{x})$. •

Claim. NP $\subseteq E X P$.
Pf. Consider any problem X in NP.
By definition, there exists a poly-time certifier $\mathrm{C}(\mathrm{x}, \mathrm{t})$ for X .
To solve input x, run $C(x, t)$ on all strings t with of length polyn in $|x|$ Return yes, if $C(x, t)$ returns yes for any of these.

The main question: P vs NP

Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Gödel]

 Is the decision problem as easy as the certification problem? Clay $\$ 1$ million prize.

If yes: Efficient algorithms for 3-COLOR, TSP, FACTOR, SAT, ... If no: No efficient algorithms possible for 3-COLOR, TSP, SAT, ...

What do we know about NP?

- Nobody knows if all problems in NP can be done in polynomial time, i.e. does $\mathrm{P}=\mathrm{NP}$?
- one of the most important open questions in all of science.
- Huge practical implications specially if answer is yes
- To show Hamil-cycle $\notin P$ we have to prove that there is no poly-time algorithm for it even using all mathematical theorem that will be discovered in future!

NP Completeness

Complexity Theorists Approach: We don't know how to prove any problem in NP is hard. So, let's find hardest problems in NP.

NP-hard: A problem B is NP-hard iff for any problem $A \in N P$, we have $A \leq_{p} B$

NP-Completeness: A problem B is NP-complete iff B is NP-hard and $B \in N P$.

Motivations:

- If $P \neq N P$, then every NP-Complete problems is not in P. So, we shouldn't try to design Polytime algorithms
- To show $P=N P$, it is enough to design a polynomial time algorithm for just one NP-complete problem.

Cook-Levin Theorem

Theorem (Cook 71, Levin 73): 3-SAT is NP-complete, i.e., for all problems $A \in N P, A \leq_{p} 3$-SAT.

- So, 3-SAT is the hardest problem in NP.

What does this say about other problems of interest? Like Independent set, Vertex Cover, ...

Fact: If $A \leq_{p} B$ and $B \leq_{p} C$ then, $A \leq_{p} C$
Pf idea: Just compose the reductions from A to B and B to C

So, if we prove $3-$ SAT \leq_{p} Independent set, then Independent Set, Clique, Vertex cover, Set cover are all NP-complete 3 -SAT \leq_{p} Independent Set \leq_{p} Vertex Cover \leq_{p} Set Cover

Summary

- If a problem is NP-hard it does not mean that all instances are hard, e.g., Vertex-cover has a polynomial-time algorithm on trees or bipartite graphs
- We learned the crucial idea of polynomial-time reduction. This can be even used in algorithm design, e.g., we know how to solve max-flow so we reduce image segmentation to max-flow
- NP-Complete problems are the hardest problem in NP
- NP-hard problems may not necessarily belong to NP.
- Polynomial-time reductions are transitive relations

$3-\mathrm{SAT} \leq_{p}$ Independent Set

Map a 3-CNF to (G, k). Say m is number of clauses

- Create a vertex for each literal
- Join two literals if
- They belong to the same clause (blue edges)
- The literals are negations, e.g., x_{i}, \bar{x}_{i} (red edges)
- Set k=m

$$
\left(x_{1} \vee \overline{x_{3}} \vee x_{4}\right) \wedge\left(x_{2} \vee \overline{x_{4}} \vee x_{3}\right) \wedge\left(x_{2} \vee \overline{x_{1}} \vee x_{3}\right)
$$

Correctness of $3-$ SAT \leq_{p} Indep Set

F satisfiable => An independent of size m
Given a satisfying assignment, Choose one node from each clause where the literal is satisfied

$$
\left(x_{1} \vee \overline{x_{3}} \vee x_{4}\right) \wedge\left(x_{2} \vee \overline{x_{4}} \vee x_{3}\right) \wedge\left(x_{2} \vee \overline{x_{1}} \vee x_{3}\right)
$$

Satisfying assignment: $x_{1}=T, x_{2}=F, x_{3}=T, x_{4}=F$

- S has exactly one node per clause $=>$ No blue edges between S
- S follows a truth-assignment => No red edges between S
- S has one node per clause => $|S|=m$

Correctness of $3-$ SAT \leq_{p} Indep Set

An independent set of size m => A satisfying assignment Given an independent set S of size m.
S has exactly one vertex per clause (because of blue edges)
S does not have $x_{i}, \overline{x_{i}}$ (because of red edges)
So, S gives a satisfying assignment

Satisfying assignment: $x_{1}=F, x_{2}=?, x_{3}=T, x_{4}=T$

$$
\left(x_{1} \vee \overline{x_{3}} \vee x_{4}\right) \wedge\left(x_{2} \vee \overline{x_{4}} \vee x_{3}\right) \wedge\left(x_{2} \vee \overline{x_{1}} \vee x_{3}\right)
$$

Project Selection

Project Selection

Projects with prerequisites.
can be positive or negative

- Set P of possible projects. Project v has associated revenue p_{v}.
- some projects generate money: create interactive e-commerce interface, redesign web page
- others cost money: upgrade computers, get site license
- Set of prerequisites E. If $(v, w) \in E, c a n ' t$ do project v and unless also do project w.
- A subset of projects $A \subseteq P$ is feasible if the prerequisite of every project in A also belongs to A.

Project selection. Choose a feasible subset of projects to maximize revenue.

Project Selection: Prerequisite Graph

Prerequisite graph.

- Include an edge from v to w if can' \dagger do v without also doing w.
- $\{v, w, x\}$ is feasible subset of projects.
- $\{v, x\}$ is infeasible subset of projects.

feasible

infeasible

Project Selection: Min Cut Formulation

Min cut formulation.

- Assign capacity ∞ to all prerequisite edge.
- Add edge (s, v) with capacity p_{v} if $p_{v}>0$.
- Add edge (v, t) with capacity $-p_{v}$ if $p_{v}<0$.
- For notational convenience, define $p_{s}=p_{t}=0$.

Project Selection: Min Cut Formulation

Claim. (A, B) is min cut iff $A-\{s\}$ is optimal set of projects.

- Infinite capacity edges ensure $A-\{s\}$ is feasible.
- Max revenue because: $\operatorname{cap}(A, B)=\sum_{v \in B: p_{v}>0} p_{v}+\sum_{v \in A: p_{v}<0}\left(-p_{v}\right)$

$$
=\underbrace{\sum_{v: p_{v}>0} p_{v}}_{\text {constant }}-\sum_{v \in A} p_{v}
$$

What is next?

- CSE 431 (Complexity Course)
- How to prove lower bounds on algorithms?
- CSE 422 (Advanced Toolkit for Modern Alg)
- SVD, Data structures, many programming tasks
- CSE 521 (Graduate Algorithms Course)

Prereq: 312, Math 308

- How to design streaming algorithms?
- How to design algorithms for high dimensional data?
- How to use matrices/eigenvalues/eigenvectors to design algorithms
- How to use LPs to design algorithms?
- CSE 525 (Graduate Randomized Algorithms Course) Prereq: CSE 521
- How to use randomization to design algorithms?
- How to use Markov Chains to design algorithms?

Course Evaluations

- How can we improve this course?
- Did you like sections? Should we keep having them? Any suggestion on how to improve sections?
- Did you like topics related to linear programming? Did you like to see more of that?
- Which topic was most/least interesting to you?
- Which problem sets did you like more?

