CSE 421

Polynomial Time Reductions
NP Completeness

Shayan Oveis Gharan

P, NP, EXP

P. Decision problems for which there is a
EXP. Decision problems for which there is an
NP. Decision problems for which there is a

Claim. P < NP.

Pf. Consider any problem X in P.
By definition, there exists a poly-time algorithm A(x) that solves X.
Certificate: t = empty string, certifier C(x, @) = A(x). =

Claim. NP < EXP.

Pf. Consider any problem X in NP.
By definition, there exists a poly-time certifier C(x, t) for X.
To solve input x, run C(x, t) on all strings t with of length polyn in |x|
Return yes, if C(x, t) returns yes for any of these.

The main question: P vs NP

Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Godel]
Is the decision problem as easy as the certification problem?
Clay $1 million prize.

If Pz NP If P=NP

If yes: Efficient algorithms for 3-COLOR, TSP, FACTOR, SAT, ...
If no: No efficient algorithms possible for 3-COLOR, TSP, SAT, ...

What do we know about NP?

* Nobody knows if all problems in NP can be done in
polynomial time, i.e. does P=NP?

« one of the most important open questions in all of science.
« Huge practical implications specially if answer is yes

 To show Hamil-cycle € P we have to prove that there is
no poly-time algorithm for it even using all mathematical
theorem that will be discovered in !

NP Completeness

Complexity Theorists Approach: We don’t know how to prove
any problem in NP is hard. So, let’s find hardest problems in NP.

NP-hard: A problem B is NP-hard iff for any problem A € NP, we
have A <, B

NP-Completeness: A problem B is NP-complete iff B is NP-hard
and B € NP.

Motivations:

« If P+ NP, then every NP-Complete problems is not in P. So,
we shouldn’t try to design Polytime algorithms

« Toshow P = NP, itis enough to design a polynomial time
algorithm for just one NP-complete problem.

Cook-Levin Theorem

Theorem (Cook 71, Levin 73): 3-SAT is NP-complete, i.e., for all
problems A € NP, A <, 3-SAT.

« S0, 3-SAT is the hardest problem in NP.

What does this say about other problems of interest? Like
Independent set, Vertex Cover, ...

Fact: IfA<,Band B <, Cthen, A <, C
Pf idea: Just compose the reductions from Ato B and Bto C

So, if we prove 3-SAT <, Independent set, then Independent
Set, Clique, Vertex cover, Set cover are all NP-complete

3-SAT <, Independent Set <, Vertex Cover <,, Set Cover

Summary

If a problem is NP-hard it does not mean that all instances are
hard, e.g., Vertex-cover has a polynomial-time algorithm on
trees or bipartite graphs

We learned the crucial idea of polynomial-time reduction. This
can be even used in algorithm design, e.g., we know how to
solve max-flow so we reduce image segmentation to max-flow

NP-Complete problems are the hardest problem in NP
NP-hard problems may not necessarily belong to NP.

Polynomial-time reductions are transitive relations

3-SAT <, Independent Set

Map a 3-CNF to (G,k). Say m is number of clauses
« Create a vertex for each literal

« Join two literals if
» They belong to the same clause (blue edges)

« The literals are negations, e.g., x;, x; (red edges)
¢ Set k=m

(1 VX3V) A(X VXLV X3) A(x, V XV X3

Polynomial-Time Reduction

Correctness of 3-SAT <,, Indep Set

F satisfiable => An independent of size m
Given a satisfying assignment, Choose one node from each clause

where the literal is satisfied
(X1 VX3V x) A(xy Vg Vxg) Alxy VIV X3)

Satisfying assignment: x; = T,x, = F,x3 =T, x4, = F

* S has exactly one node per clause => No blue edges between S
« S follows a truth-assignment => No red edges between S

* S has one node per clause => [S|=m

Correctness of 3-SAT <,, Indep Set

An independent set of size m => A satisfying assignment
Given an independent set S of size m.

S has exactly one vertex per clause (because of blue edges)
S does not have x;, x; (because of red edges)

So, S gives a satisfying assignment

Satisfying assignment: x; = F,x, =?,x3 =T, x, =T
(X1 VX3V xg) Axa VIV x3) A (X VIV X3)

10

Project Selection

Project Selection

can be positive or negative

Projects with prerequisites. |
« Set P of possible projects. Project v has associated revenue p,.
- some projects generate money: create interactive e-commerce interface,
redesigh web page
- others cost money: upgrade computers, get site license
. Set of prerequisites E. If (v,w) e E, can't do project v and unless
also do project w.
. A subset of projects A c P is feasible if the prerequisite of every
project in A also belongs to A.

Project selection. Choose a feasible subset of projects to maximize
revenue.

12

Project Selection: Prerequisite Graph

Prerequisite graph.
« Include an edge from v o w if can't do v without also doing w.
- {v,w, x} is feasible subset of projects.
- {v, x} is infeasible subset of projects.

feasible infeasible

13

Project Selection: Min Cut Formulation

Min cut formulation.
« Assign capacity « to all prerequisite edge.
. Add edge (s, v) with capacity p, if p, > 0.
. Add edge (v,) with capacity -p, if p, < O.
. For notational convenience, define ps = p; = 0.

14

Project Selection: Min Cut Formulation

Claim. (A, B) is min cut iff A —{s} is optimal set of projects.
. Infinite capacity edges ensure A — {s} is feasible.

= Max revenue because: cap(A, B) = Sp, + D(=p,)
veB:p, >0 vEA:p, <0

= 2P, - 2P,

vip,>0 vEA
%/_J
constant

“Pw
B

“Px

15

What is next?

CSE 431 (Complexity Course)

* How to prove lower bounds on algorithms?

CSE 422 (Advanced Toolkit for Modern Alg)

« SVD, Data structures, many programming tasks

CSE 521 (Graduate Algorithms Course)

p@s)=2/8 (a) (b)

Prereq: 312, Math 308 p(b,S) = 3/8 N/

« How to design streaming algorithms? p(c,S) = 6/8

* How to design algorithms for high dimensional data?
* How to use matrices/eigenvalues/eigenvectors to design algorithms
* How to use LPs to design algorithms?

CSE 525 (Graduate Randomized Algorithms Course)
Prereq: CSE 521
* How to use randomization to design algorithms?
* How to use Markov Chains to design algorithms?

Course Evaluations

How can we improve this course?

Did you like sections? Should we keep having them? Any
suggestion on how to improve sections?

Did you like topics related to linear programming? Did you like to
see more of that?

Which topic was most/least interesting to you?

Which problem sets did you like more?

17

