
CSE 421

Polynomial Time Reductions
NP Completeness

Shayan Oveis Gharan

1

P, NP, EXP
P. Decision problems for which there is a poly-time algorithm.
EXP. Decision problems for which there is an exponential-time algorithm.
NP. Decision problems for which there is a poly-time certifier.

Claim. P ⊆ NP.
Pf. Consider any problem X in P.

By definition, there exists a poly-time algorithm A(x) that solves X.
Certificate: t = empty string, certifier C(x, ∅) = A(x). ▪

Claim. NP ⊆ EXP.
Pf. Consider any problem X in NP.

By definition, there exists a poly-time certifier C(x, t) for X.
To solve input x, run C(x, t) on all strings t with of length polyn in |x|
Return yes, if C(x, t) returns yes for any of these.

2

The main question: P vs NP
Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Gödel]

Is the decision problem as easy as the certification problem?
Clay $1 million prize.

If yes: Efficient algorithms for 3-COLOR, TSP, FACTOR, SAT, …
If no: No efficient algorithms possible for 3-COLOR, TSP, SAT, …

3

EXP NP

P

If P ≠ NP If P = NP

EXP
P = NP

What do we know about NP?

• Nobody knows if all problems in NP can be done in
polynomial time, i.e. does P=NP?
• one of the most important open questions in all of science.
• Huge practical implications specially if answer is yes

• To show Hamil-cycle ∉ 𝑃 we have to prove that there is
no poly-time algorithm for it even using all mathematical
theorem that will be discovered in future!

4

NP Completeness

Complexity Theorists Approach: We don’t know how to prove
any problem in NP is hard. So, let’s find hardest problems in NP.

NP-hard: A problem B is NP-hard iff for any problem 𝐴 ∈ 𝑁𝑃, we
have 𝐴 ≤! 𝐵

NP-Completeness: A problem B is NP-complete iff B is NP-hard
and 𝐵 ∈ 𝑁𝑃.

Motivations:
• If 𝑃 ≠ 𝑁𝑃, then every NP-Complete problems is not in P. So,

we shouldn’t try to design Polytime algorithms
• To show 𝑃 = 𝑁𝑃, it is enough to design a polynomial time

algorithm for just one NP-complete problem.

5

Cook-Levin Theorem

Theorem (Cook 71, Levin 73): 3-SAT is NP-complete, i.e., for all
problems 𝐴 ∈ 𝑁𝑃, 𝐴 ≤! 3-SAT.

• So, 3-SAT is the hardest problem in NP.

What does this say about other problems of interest? Like
Independent set, Vertex Cover, …

Fact: If 𝐴 ≤! 𝐵 and 𝐵 ≤! 𝐶 then, 𝐴 ≤! 𝐶
Pf idea: Just compose the reductions from A to B and B to C

So, if we prove 3-SAT ≤! Independent set, then Independent
Set, Clique, Vertex cover, Set cover are all NP-complete

3-SAT ≤! Independent Set ≤! Vertex Cover ≤! Set Cover

6

Summary

• If a problem is NP-hard it does not mean that all instances are
hard, e.g., Vertex-cover has a polynomial-time algorithm on
trees or bipartite graphs

• We learned the crucial idea of polynomial-time reduction. This
can be even used in algorithm design, e.g., we know how to
solve max-flow so we reduce image segmentation to max-flow

• NP-Complete problems are the hardest problem in NP

• NP-hard problems may not necessarily belong to NP.

• Polynomial-time reductions are transitive relations

7

3-SAT ≤! Independent Set

Map a 3-CNF to (G,k). Say m is number of clauses
• Create a vertex for each literal
• Join two literals if

• They belong to the same clause (blue edges)
• The literals are negations, e.g., 𝑥" , ,𝑥" (red edges)

• Set k=m

𝑥! ∨ 𝑥" ∨ 𝑥4 ∧ 	𝑥# ∨ 𝑥$ ∨ 𝑥3 ∧ 	𝑥# ∨ 𝑥! ∨ 𝑥3

8

𝑥!

𝑥"

𝑥#

𝑥$

𝑥"

𝑥#

𝑥$

𝑥!

𝑥"

Polynomial-Time Reduction

Correctness of 3-SAT ≤! Indep Set

F satisfiable => An independent of size m
Given a satisfying assignment, Choose one node from each clause
where the literal is satisfied

𝑥$ ∨ 𝑥% ∨ 𝑥& ∧ 𝑥' ∨ 𝑥& ∨ 𝑥% ∧ 𝑥' ∨ 𝑥$ ∨ 𝑥%
Satisfying assignment: 𝑥! = 𝑇, 𝑥# = 𝐹, 𝑥" = 𝑇, 𝑥$ = 𝐹	

• S has exactly one node per clause => No blue edges between S
• S follows a truth-assignment => No red edges between S
• S has one node per clause => |S|=m 9

𝑥!

𝑥"

𝑥#

𝑥$

𝑥"

𝑥#

𝑥$

𝑥!

𝑥"

Correctness of 3-SAT ≤! Indep Set

An independent set of size m => A satisfying assignment
Given an independent set S of size m.
S has exactly one vertex per clause (because of blue edges)
S does not have 𝑥%, +𝑥% (because of red edges)
So, S gives a satisfying assignment

Satisfying assignment: 𝑥# = 𝐹, 𝑥$ =? , 𝑥% = 𝑇, 𝑥& = 𝑇	
𝑥# ∨ 𝑥% ∨ 𝑥& ∧ 𝑥$ ∨ 𝑥& ∨ 𝑥% ∧ 𝑥$ ∨ 𝑥# ∨ 𝑥%

10

𝑥!

𝑥"

𝑥#

𝑥$

𝑥"

𝑥#

𝑥$

𝑥!

𝑥"

Project Selection

12

Project Selection

Projects with prerequisites.
 Set P of possible projects. Project v has associated revenue pv.

– some projects generate money: create interactive e-commerce interface,
redesign web page

– others cost money: upgrade computers, get site license
 Set of prerequisites E. If (v, w) Î E, can't do project v and unless

also do project w.
 A subset of projects A Í P is feasible if the prerequisite of every

project in A also belongs to A.

Project selection. Choose a feasible subset of projects to maximize
revenue.

can be positive or negative

13

Project Selection: Prerequisite Graph

Prerequisite graph.
 Include an edge from v to w if can't do v without also doing w.
 {v, w, x} is feasible subset of projects.
 {v, x} is infeasible subset of projects.

v

w

xv

w

x

feasible infeasible

14

Min cut formulation.
 Assign capacity ¥ to all prerequisite edge.
 Add edge (s, v) with capacity -pv if pv > 0.
 Add edge (v, t) with capacity -pv if pv < 0.
 For notational convenience, define ps = pt = 0.

s t

-pw

u

v

w

x

y z

Project Selection: Min Cut Formulation

¥

pv -px

¥

¥

¥
¥

¥py

pu

-pz

¥

15

Claim. (A, B) is min cut iff A - { s } is optimal set of projects.
 Infinite capacity edges ensure A - { s } is feasible.
 Max revenue because:

s t

-pw

u

v

w

x

y z

Project Selection: Min Cut Formulation

pv -px

€

cap(A, B) = p v
v∈B: pv > 0

∑ + (−p v)
v∈ A: pv < 0

∑

= p v
v : pv > 0
∑

constant

− p v
v∈ A
∑

py

pu

¥
¥

¥

A

What is next?

• CSE 431 (Complexity Course)
• How to prove lower bounds on algorithms?

• CSE 422 (Advanced Toolkit for Modern Alg)
• SVD, Data structures, many programming tasks

• CSE 521 (Graduate Algorithms Course)
 Prereq: 312, Math 308

• How to design streaming algorithms?
• How to design algorithms for high dimensional data?
• How to use matrices/eigenvalues/eigenvectors to design algorithms
• How to use LPs to design algorithms?

• CSE 525 (Graduate Randomized Algorithms Course)
Prereq: CSE 521
• How to use randomization to design algorithms?
• How to use Markov Chains to design algorithms?

16

Course Evaluations

• How can we improve this course?

• Did you like sections? Should we keep having them? Any
suggestion on how to improve sections?

• Did you like topics related to linear programming? Did you like to
see more of that?

• Which topic was most/least interesting to you?

• Which problem sets did you like more?

17

