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P, NP, EXP
P.  Decision problems for which there is a poly-time algorithm.
EXP.  Decision problems for which there is an exponential-time algorithm.
NP.  Decision problems for which there is a poly-time certifier.

Claim.  P  ⊆ NP.
Pf.  Consider any problem X in P.

By definition, there exists a poly-time algorithm A(x) that solves X.
Certificate: t = empty string, certifier C(x, ∅) = A(x). ▪

Claim.  NP  ⊆ EXP.
Pf.  Consider any problem X in NP.

By definition, there exists a poly-time certifier C(x, t) for X.
To solve input x, run C(x, t) on all strings t with of length polyn in |x|
Return yes, if C(x, t) returns yes for any of these.
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The main question: P vs NP
Does P = NP?  [Cook 1971, Edmonds, Levin, Yablonski, Gödel]

Is the decision problem as easy as the certification problem?
Clay $1 million prize.

If yes:  Efficient algorithms for 3-COLOR, TSP, FACTOR, SAT, …
If no:  No efficient algorithms possible for 3-COLOR, TSP, SAT, …
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What do we know about NP?

• Nobody knows if all problems in NP can be done in 
polynomial time, i.e. does P=NP?
• one of the most important open questions in all of science.
• Huge practical implications specially if answer is yes

• To show Hamil-cycle ∉ 𝑃 we have to prove that there is 
no poly-time algorithm for it even using all mathematical 
theorem that will be discovered in future!
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NP Completeness

Complexity Theorists Approach: We don’t know how to prove 
any problem in NP is hard. So, let’s find hardest problems in NP.

NP-hard: A problem B is NP-hard iff for any problem 𝐴 ∈ 𝑁𝑃, we 
have 𝐴 ≤! 𝐵

NP-Completeness: A problem B is NP-complete iff B is NP-hard 
and 𝐵 ∈ 𝑁𝑃.

Motivations: 
• If 𝑃 ≠ 𝑁𝑃, then every NP-Complete problems is not in P. So, 

we shouldn’t try to design Polytime algorithms
• To show 𝑃 = 𝑁𝑃, it is enough to design a polynomial time 

algorithm for just one NP-complete problem.
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Cook-Levin Theorem

Theorem (Cook 71, Levin 73): 3-SAT is NP-complete, i.e., for all 
problems 𝐴 ∈ 𝑁𝑃, 𝐴 ≤! 3-SAT.

• So, 3-SAT is the hardest problem in NP.

What does this say about other problems of interest? Like 
Independent set, Vertex Cover, …

Fact: If 𝐴 ≤! 𝐵 and 𝐵 ≤! 𝐶 then, 𝐴 ≤! 𝐶
Pf idea: Just compose the reductions from A to B and B to C

So, if we prove 3-SAT ≤! Independent set, then Independent 
Set, Clique, Vertex cover, Set cover are all NP-complete

3-SAT ≤! Independent Set ≤! Vertex Cover ≤! Set Cover
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Summary

• If a problem is NP-hard it does not mean that all instances are 
hard, e.g., Vertex-cover has a polynomial-time algorithm on 
trees or bipartite graphs

• We learned the crucial idea of polynomial-time reduction. This 
can be even used in algorithm design, e.g., we know how to 
solve max-flow so we reduce image segmentation to max-flow

• NP-Complete problems are the hardest problem in NP

• NP-hard problems may not necessarily belong to NP. 

• Polynomial-time reductions are transitive relations
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3-SAT ≤! Independent Set

Map a 3-CNF to (G,k). Say m is number of clauses
• Create a vertex for each literal
• Join two literals if

• They belong to the same clause (blue edges)
• The literals are negations, e.g., 𝑥" , ,𝑥" (red edges)

• Set k=m

𝑥! ∨ 𝑥" ∨ 𝑥4 ∧ 	𝑥# ∨ 𝑥$ ∨ 𝑥3 ∧ 	𝑥# ∨ 𝑥! ∨ 𝑥3
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Correctness of 3-SAT ≤! Indep Set

F satisfiable => An independent of size m
Given a satisfying assignment, Choose one node from each clause 
where the literal is satisfied

𝑥$ ∨ 𝑥% ∨ 𝑥& ∧ 𝑥' ∨ 𝑥& ∨ 𝑥% ∧ 𝑥' ∨ 𝑥$ ∨ 𝑥%
Satisfying assignment: 𝑥! = 𝑇, 𝑥# = 𝐹, 𝑥" = 𝑇, 𝑥$ = 𝐹	

• S has exactly one node per clause => No blue edges between S
• S follows a truth-assignment => No red edges between S
• S has one node per clause => |S|=m 9
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Correctness of 3-SAT ≤! Indep Set 

An independent set of size m => A satisfying assignment
Given an independent set S of size m.
S has exactly one vertex per clause (because of blue edges)
S does not have 𝑥%, +𝑥%  (because of red edges)
So, S gives a satisfying assignment

Satisfying assignment: 𝑥# = 𝐹, 𝑥$ =? , 𝑥% = 𝑇, 𝑥& = 𝑇	
𝑥# ∨ 𝑥% ∨ 𝑥& ∧ 𝑥$ ∨ 𝑥& ∨ 𝑥% ∧ 𝑥$ ∨ 𝑥# ∨ 𝑥%

10

𝑥!

𝑥"

𝑥#

𝑥$

𝑥"

𝑥#

𝑥$

𝑥!

𝑥"



Project Selection
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Project Selection

Projects with prerequisites.
 Set P of possible projects. Project v has associated revenue pv.

– some projects generate money:  create interactive e-commerce interface, 
redesign web page

– others cost money:  upgrade computers, get site license
 Set of prerequisites E.  If (v, w) Î E, can't do project v and unless 

also do project w.
 A subset of projects A Í P is feasible if the prerequisite of every 

project in A also belongs to A.

Project selection.  Choose a feasible subset of projects to maximize 
revenue.

can be positive or negative
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Project Selection:  Prerequisite Graph

Prerequisite graph.
 Include an edge from v to w if can't do v without also doing w.
 {v, w, x} is feasible subset of projects.
 {v, x} is infeasible subset of projects.
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Min cut formulation.
 Assign capacity ¥ to all prerequisite edge.
 Add edge (s, v) with capacity -pv if pv > 0.
 Add edge (v, t) with capacity -pv if pv < 0.
 For notational convenience, define ps = pt = 0.
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Project Selection:  Min Cut Formulation
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Claim.  (A, B) is min cut iff A - { s } is optimal set of projects.
 Infinite capacity edges ensure A - { s } is feasible.
 Max revenue because:
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Project Selection:  Min Cut Formulation
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What is next?

• CSE 431 (Complexity Course)
• How to prove lower bounds on algorithms?

• CSE 422 (Advanced Toolkit for Modern Alg)
• SVD, Data structures, many programming tasks

• CSE 521 (Graduate Algorithms Course)
       Prereq: 312, Math 308

• How to design streaming algorithms?
• How to design algorithms for high dimensional data?
• How to use matrices/eigenvalues/eigenvectors to design algorithms
• How to use LPs to design algorithms?

• CSE 525 (Graduate Randomized Algorithms Course)
Prereq: CSE 521
• How to use randomization to design algorithms?
• How to use Markov Chains to design algorithms?
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Course Evaluations

• How can we improve this course?

• Did you like sections? Should we keep having them? Any 
suggestion on how to improve sections?

• Did you like topics related to linear programming? Did you like to 
see more of that?

• Which topic was most/least interesting to you?

• Which problem sets did you like more?
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