N
 CSE 421

Polynomial Time Reductions

Shayan Oveis Gharan

Boiling Water Example

Q: Given an empty bowl, how do you make boiling water?

A: Well, I fill it with water, turn on the stove, leave the bowl on the stove for 20 minutes. I have my boiling water.

Q: Now, suppose you have a bowl of water, how do you make boiling water?

A: First, I pour water away, now
I have an empty bowl and I have already solved this!

Lesson: Never solve a problem twice!

Reductions \& NP-Completeness

Polynomial Time Reduction

Def $\mathrm{A} \leq_{p} \mathrm{~B}$: if there is an algorithm for problem A using a 'black box' (subroutine) that solve problem B s.t.,

- Algorithm uses only a polynomial number of steps
- Makes only a polynomial number of calls to a subroutine for B

So,

B is Polynomial time solvable

Conversely,

In words, B is as hard as A (it can be even harder)

\leq_{p}^{1} Reductions

In this lecture we see a restricted form of polynomial-time reduction often called Karp or many-to-one reduction
$A \leq_{p}^{1} B$: if and only if there is an algorithm for A given a black box solving B that on input x

- Runs for polynomial time computing an input $f(x)$ of B
- Makes one call to the black box for B for input $f(x)$
- Returns the answer that the black box gave

We say that the function $f($.$) is the reduction$

Decision Problems

A decision problem is a computational problem where the answer is just yes/no

Here, we study computational complexity of decision Problems.
Why?

- much simpler to deal with
- Decision version is not harder than Search version, so it is easier to lower bound Decision version
- Less important, usually, you can use decider multiple times to find an answer .

Example 1: Indep Set \leq_{p} Clique

Indep Set: Given $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and an integer k , is there $S \subseteq V$ s.t. $|S| \geq k$ an no two vertices in S are joined by an edge?

Clique: Given a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and an integer k , is there $S \subseteq V$, $|U| \geq k$ s.t., every pair of vertices in S is joined by an edge?

Claim: Indep Set \leq_{p} Clique
Pf: Given $G=(V, E)$ and instance of indep Set. Construct a new graph $G^{\prime}=\left(V, E^{\prime}\right)$ where $\{u, v\} \in E^{\prime}$ if and only if $\{u, v\} \notin E$.

Example 2: Vertex Cover \leq_{p} Indep Set

Vertex Cover: Given a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and an integer k , is there a vertex cover of size at most k ?

Claim: For any graph $G=(V, E)$, S is an independent set iff $V-S$ is a vertex cover
Pf:
=> Let S be a independent set of G
Then, S has at most one endpoint of every edge of G
So, $V-S$ has at least one endpoint of every edge of G
So, $V-S$ is a vertex cover.
<= Suppose $V-S$ is a vertex cover
Then, there is no edge between vertices of S (otherwise, $V-S$ is not a vertex cover)
So, S is an independent set.

Example 3: Vertex Cover \leq_{p} Set Cover

Set Cover: Given a set U, collection of subsets S_{1}, \ldots, S_{m} of U and an integer k, is there a collection of k sets that contain all elements of U ?

Claim: Vertex Cover \leq_{p} Set Cover
Pf:
Given $(G=(V, E), k)$ of vertex cover we construct a set cover input $f(G, k)$

- $U=E$
- For each $v \in V$ we create a set S_{v} of all edges connected to v

This clearly is a polynomial-time reduction
So, we need to prove it gives the right answer

Example 3: Vertex Cover \leq_{p} Set Cover

Claim: Vertex Cover \leq_{p} Set Cover
Pf: Given $(G=(V, E), k)$ of vertex cover we construct a set cover input $f(G, k)$

- $U=E$
- For each $v \in V$ we create a set S_{v} of all edges connected to v

Vertex-Cover (G, k) is yes => Set-Cover $f(G, k)$ is yes
If a set $W \subseteq V$ covers all edges,, just choose S_{v} for all $v \in W$, it covers all U.

Set-Cover $f(G, k)$ is yes => Vertex-Cover (G, k) is yes
If $\left(S_{v_{1}}, \ldots, S_{v_{k}}\right)$ covers all U, the set $\left\{v_{1}, \ldots, v_{k}\right\}$ covers all edges of G.

Polynomial Time

Define P (polynomial-time) to be the set of all decision problems solvable by algorithms whose worst-case running time is bounded by some polynomial in the input size.

Do we well understand P ?

- We can prove that a problem is in P by exhibiting a polynomial time algorithm
- It is in most cases very hard to prove a problem is not in P.

Beyond P?

We have seen many problems that seem hard

- Independent Set
- 3-coloring
- Min Vertex Cover
- 3-SAT

The independent set S
The 3-coloring
The vertex cover S
The T/F assignment

Given a 3-CNF $\left(x_{1} \vee \overline{x_{2}} \vee x_{9}\right) \wedge\left(\overline{x_{2}} \vee x_{3} \vee x_{7}\right) \wedge \cdots$ is there a satisfying assignment?

Common Property: If the answer is yes, there is a "short" proof (a.k.a., certificate), that allows you to verify (in polynomial-time) that the answer is yes.

- The proof may be hard to find

NP

Certifier: algorithm $\mathrm{C}(\mathrm{x}, \mathrm{t})$ is a certifier for problem A if for every string x, the answer is "yes" iff there exists a string t such that $C(x, t)=$ yes.

Intuition: Certifier doesn't determine whether answer is "yes" on its own; rather, it checks a proposed proof that answer is "yes".

NP: Decision problems for which there exists a poly-time certifier.

Remark. NP stands for nondeterministic polynomial-time.

Example: 3SAT is in NP

Given a 3-CNF formula, is there a satisfying assignment?
Certificate: An assignment of truth values to the n boolean variables.

Verifier: Check that each clause has at least one true literal.
$\mathrm{Ex}:\left(x_{1} \vee \overline{x_{3}} \vee x_{4}\right) \wedge\left(x_{2} \vee \overline{x_{4}} \vee x_{3}\right) \wedge\left(x_{2} \vee \overline{x_{1}} \vee x_{3}\right)$
Certificate: $x_{1}=T, x_{2}=F, x_{3}=T, x_{4}=F$

Conclusion: 3-SAT is in NP

Example: Hamil-Cycle is in NP

HAM-CYCLE. Given an undirected graph $G=(V, E)$, does there exist a simple cycle C that visits every node?

Certificate. A permutation of the n nodes.
Certifier. Check that the permutation contains each node in V exactly once, and that there is an edge between each pair of adjacent nodes in the permutation.

Conclusion. HAM-CYCLE is in NP.

Example: Min s,t-cut in in NP

MIN-CUT. Given a flow network, and a number k, does there exist a min-cut of capacity at most k ?

Certificate. A min-cut (A,B).

Certifier.Check that the capacity of the min-cut is at most k .

Conclusion. MIN-CUT is in NP.

P, NP, EXP

P. Decision problems for which there is a poly-time algorithm.

EXP. Decision problems for which there is an exponential-time algorithm.
NP. Decision problems for which there is a poly-time certifier.

Claim. $\mathrm{P} \subseteq \mathrm{NP}$.
Pf. Consider any problem X in P .
By definition, there exists a poly-time algorithm $A(x)$ that solves X. Certificate: $\mathrm{t}=$ empty string, certifier $\mathrm{C}(\mathrm{x}, \mathrm{t})=\mathrm{A}(\mathrm{x})$.

Claim. NP $\subseteq E X P$.
Pf. Consider any problem X in NP.
By definition, there exists a poly-time certifier $C(x, t)$ for X.
To solve input x, run $C(x, t)$ on all strings t with $|t| \leq p(|x|)$
Return yes, if $C(x, t)$ returns yes for any of these.

The main question: P vs NP

Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Gödel]

 Is the decision problem as easy as the certification problem? Clay $\$ 1$ million prize.

If yes: Efficient algorithms for 3-COLOR, TSP, FACTOR, SAT, ... If no: No efficient algorithms possible for 3-COLOR, TSP, SAT, ...

What do we know about NP?

- Nobody knows if all problems in NP can be done in polynomial time, i.e. does $\mathrm{P}=\mathrm{NP}$?
- one of the most important open questions in all of science.
- Huge practical implications specially if answer is yes
- To show Hamil-cycle $\notin P$ we have to prove that there is no poly-time algorithm for it even using all mathematical theorem that will be discovered in future!

NP Completeness

Complexity Theorists Approach: We don't know how to prove any problem in NP is hard. So, let's find hardest problems in NP.

NP-hard: A problem B is NP-hard iff for any problem $A \in N P$, we have $A \leq_{p} B$

NP-Completeness: A problem B is NP-complete iff B is NP-hard and $B \in N P$.

Motivations:

- If $P \neq N P$, then every NP-Complete problems is not in P. So, we shouldn't try to design Polytime algorithms
- To show $P=N P$, it is enough to design a polynomial time algorithm for just one NP-complete problem.

Cook-Levin Theorem

Theorem (Cook 71, Levin 73): 3-SAT is NP-complete, i.e., for all problems $A \in N P, A \leq_{p} 3$-SAT.

- So, 3-SAT is the hardest problem in NP.

What does this say about other problems of interest? Like Independent set, Vertex Cover, ...

Fact: If $A \leq_{p} B$ and $B \leq_{p} C$ then, $A \leq_{p} C$
Pf idea: Just compose the reductions from A to B and B to C

So, if we prove $3-$ SAT \leq_{p} Independent set, then Independent Set, Clique, Vertex cover, Set cover are all NP-complete 3 -SAT \leq_{p} Independent Set \leq_{p} Vertex Cover \leq_{p} Set Cover

Summary

- If a problem is NP-hard it does not mean that all instances are hard, e.g., Vertex-cover has a polynomial-time algorithm on trees or bipartite graphs
- We learned the crucial idea of polynomial-time reduction. This can be even used in algorithm design, e.g., we know how to solve max-flow so we reduce image segmentation to max-flow
- NP-Complete problems are the hardest problem in NP
- NP-hard problems may not necessarily belong to NP.
- Polynomial-time reductions are transitive relations

