
CSE 421

Polynomial Time Reductions

Shayan Oveis Gharan

1

Boiling Water Example
Q: Given an empty bowl, how do you make boiling water?

A: Well, I fill it with water, turn on the stove, leave the bowl on
the stove for 20 minutes. I have my boiling water.

Q: Now, suppose you have a bowl of water, how do you make
boiling water?

A: First, I pour water away, now
I have an empty bowl and
I have already solved this!

2

Lesson: Never solve a problem twice!

3

Reductions & NP-Completeness

Polynomial Time Reduction

Def A £P
 B: if there is an algorithm for problem A using a

‘black box’ (subroutine) that solve problem B s.t.,
• Algorithm uses only a polynomial number of steps
• Makes only a polynomial number of calls to a subroutine for B

So,

Conversely,

In words, B is as hard as A (it can be even harder)

5

B is Polynomial
time solvable

A is Polynomial
time solvable

No efficient
Algorithm for A

No efficient
Algorithm for B

≤!" Reductions

In this lecture we see a restricted form of polynomial-time
reduction often called Karp or many-to-one reduction

𝐴 ≤!" 𝐵: if and only if there is an algorithm for A given a
black box solving B that on input x
• Runs for polynomial time computing an input f(x) of B
• Makes one call to the black box for B for input f(x)
• Returns the answer that the black box gave

We say that the function f(.) is the reduction

6

Decision Problems

A decision problem is a computational problem where the
answer is just yes/no

Here, we study computational complexity of decision Problems.

Why?
• much simpler to deal with
• Decision version is not harder than Search version, so it is

easier to lower bound Decision version
• Less important, usually, you can use decider multiple times to

find an answer .

7

Indep Set: Given G=(V,E) and an integer k, is there 𝑆 ⊆ 𝑉 s.t.
𝑆 ≥ 𝑘 an no two vertices in S are joined by an edge?

Clique: Given a graph G=(V,E) and an integer k, is there 𝑆 ⊆ 𝑉,
|U| ³ k s.t., every pair of vertices in S is joined by an edge?
Claim: Indep Set ≤! Clique
Pf: Given 𝐺 = (𝑉, 𝐸) and instance of indep Set. Construct a new
graph 𝐺" = (𝑉, 𝐸") where 𝑢, 𝑣 ∈ 𝐸′ if and only if 𝑢, 𝑣 ∉ 𝐸.

Example 1: Indep Set ≤! Clique

8

S is an independent
set in G

S is an Clique
 in G’

1

2

3 4

5

1

2

3 4

5

Example 2: Vertex Cover ≤! Indep Set

Vertex Cover: Given a graph G=(V,E) and an integer k, is there a
vertex cover of size at most k?
Claim: For any graph 𝐺 = 𝑉, 𝐸 , S is an independent set iff
𝑉 − 𝑆 is a vertex cover
Pf:
=> Let S be a independent set of G
Then, 𝑆 has at most one endpoint of every edge of G
So, 𝑉 − 𝑆 has at least one endpoint of every edge of G
So, 𝑉 − 𝑆 is a vertex cover.

<= Suppose 𝑉 − 𝑆 is a vertex cover
Then, there is no edge between vertices of S (otherwise, 𝑉 − 𝑆 is
not a vertex cover)
So, 𝑆 is an independent set.

9

Example 3: Vertex Cover ≤! Set Cover

Set Cover: Given a set U, collection of subsets 𝑆#, … , 𝑆$ of U and
an integer k, is there a collection of k sets that contain all
elements of U?
Claim: Vertex Cover ≤! Set Cover
Pf:
Given (𝐺 = 𝑉, 𝐸 , 𝑘) of vertex cover we construct a set cover
input 𝑓(𝐺, 𝑘)
• 𝑈 = 𝐸
• For each 𝑣 ∈ 𝑉 we create a set 𝑆% of all edges connected to 𝑣

This clearly is a polynomial-time reduction

So, we need to prove it gives the right answer

10

Example 3: Vertex Cover ≤! Set Cover

Claim: Vertex Cover ≤! Set Cover
Pf: Given (𝐺 = 𝑉, 𝐸 , 𝑘) of vertex cover we construct a set cover
input 𝑓(𝐺, 𝑘)
• 𝑈 = 𝐸
• For each 𝑣 ∈ 𝑉 we create a set 𝑆% of all edges connected to 𝑣

Vertex-Cover (G,k) is yes => Set-Cover f(G,k) is yes
 If a set 𝑊 ⊆ 𝑉 covers all edges,, just choose 𝑆% for all 𝑣 ∈ 𝑊, it
covers all 𝑈.

Set-Cover f(G,k) is yes => Vertex-Cover (G,k) is yes
 If (𝑆%! , … , 𝑆%") covers all 𝑈, the set {𝑣#, … , 𝑣&} covers all edges
of G.

11

Polynomial Time

Define P (polynomial-time) to be the set of all decision
problems solvable by algorithms whose worst-case running
time is bounded by some polynomial in the input size.

Do we well understand P?
• We can prove that a problem is in P by exhibiting a

polynomial time algorithm
• It is in most cases very hard to prove a problem is not in

P.

12

Beyond P?

We have seen many problems that seem hard
• Independent Set
• 3-coloring
• Min Vertex Cover
• 3-SAT
 Given a 3-CNF 𝑥# ∨ 𝑥' ∨ 𝑥(∧ 𝑥' ∨ 𝑥) ∨ 𝑥* ∧ ⋯ is there a
satisfying assignment?

Common Property: If the answer is yes, there is a “short” proof
(a.k.a., certificate), that allows you to verify (in polynomial-time)
that the answer is yes.
• The proof may be hard to find

13

The independent set S
The 3-coloring

The vertex cover S
The T/F assignment

NP

Certifier: algorithm C(x, t) is a certifier for problem A if for every
string x, the answer is “yes” iff there exists a string t such
that C(x, t) = yes.

Intuition: Certifier doesn't determine whether answer is “yes” on
its own; rather, it checks a proposed proof that answer is “yes”.

NP: Decision problems for which there exists a poly-time
certifier.

Remark. NP stands for nondeterministic polynomial-time.

14

Example: 3SAT is in NP

Given a 3-CNF formula, is there a satisfying assignment?

Certificate: An assignment of truth values to the n boolean
variables.

Verifier: Check that each clause has at least one true
literal.
Ex: 𝑥" ∨ 𝑥# ∨ 𝑥$ ∧ 𝑥% ∨ 𝑥$ ∨ 𝑥# ∧ (𝑥% ∨ 𝑥" ∨ 𝑥#)
Certificate: 𝑥" = 𝑇, 𝑥% = 𝐹, 𝑥# = 𝑇, 𝑥$ = 𝐹	

Conclusion: 3-SAT is in NP

15

Example: Hamil-Cycle is in NP
HAM-CYCLE. Given an undirected graph G = (V, E), does there
exist a simple cycle C that visits every node?

Certificate. A permutation of the n nodes.

Certifier. Check that the permutation contains each node in V
exactly once, and that there is an edge between each pair of
adjacent nodes in the permutation.

Conclusion. HAM-CYCLE is in NP.

16
Instance x

certificate t

Example: Min s,t-cut in in NP
MIN-CUT. Given a flow network, and a number k, does there
exist a min-cut of capacity at most k?

Certificate. A min-cut (A,B).

Certifier.Check that the capacity of the min-cut is at most k.

Conclusion. MIN-CUT is in NP.

17

P, NP, EXP
P. Decision problems for which there is a poly-time algorithm.
EXP. Decision problems for which there is an exponential-time algorithm.
NP. Decision problems for which there is a poly-time certifier.

Claim. P ⊆ NP.
Pf. Consider any problem X in P.

By definition, there exists a poly-time algorithm A(x) that solves X.
Certificate: t = empty string, certifier C(x, t) = A(x). ▪

Claim. NP ⊆ EXP.
Pf. Consider any problem X in NP.

By definition, there exists a poly-time certifier C(x, t) for X.
To solve input x, run C(x, t) on all strings t with |t| ≤ p(|x|)
Return yes, if C(x, t) returns yes for any of these.

18

The main question: P vs NP
Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Gödel]

Is the decision problem as easy as the certification problem?
Clay $1 million prize.

If yes: Efficient algorithms for 3-COLOR, TSP, FACTOR, SAT, …
If no: No efficient algorithms possible for 3-COLOR, TSP, SAT, …

19

EXP NP

P

If P ≠ NP If P = NP

EXP
P = NP

What do we know about NP?

• Nobody knows if all problems in NP can be done in
polynomial time, i.e. does P=NP?
• one of the most important open questions in all of science.
• Huge practical implications specially if answer is yes

• To show Hamil-cycle ∉ 𝑃 we have to prove that there is
no poly-time algorithm for it even using all mathematical
theorem that will be discovered in future!

20

NP Completeness

Complexity Theorists Approach: We don’t know how to prove
any problem in NP is hard. So, let’s find hardest problems in NP.

NP-hard: A problem B is NP-hard iff for any problem 𝐴 ∈ 𝑁𝑃, we
have 𝐴 ≤! 𝐵

NP-Completeness: A problem B is NP-complete iff B is NP-hard
and 𝐵 ∈ 𝑁𝑃.

Motivations:
• If 𝑃 ≠ 𝑁𝑃, then every NP-Complete problems is not in P. So,

we shouldn’t try to design Polytime algorithms
• To show 𝑃 = 𝑁𝑃, it is enough to design a polynomial time

algorithm for just one NP-complete problem.

21

Cook-Levin Theorem

Theorem (Cook 71, Levin 73): 3-SAT is NP-complete, i.e., for all
problems 𝐴 ∈ 𝑁𝑃, 𝐴 ≤! 3-SAT.

• So, 3-SAT is the hardest problem in NP.

What does this say about other problems of interest? Like
Independent set, Vertex Cover, …

Fact: If 𝐴 ≤! 𝐵 and 𝐵 ≤! 𝐶 then, 𝐴 ≤! 𝐶
Pf idea: Just compose the reductions from A to B and B to C

So, if we prove 3-SAT ≤! Independent set, then Independent
Set, Clique, Vertex cover, Set cover are all NP-complete

3-SAT ≤! Independent Set ≤! Vertex Cover ≤! Set Cover

22

Summary

• If a problem is NP-hard it does not mean that all instances are
hard, e.g., Vertex-cover has a polynomial-time algorithm on
trees or bipartite graphs

• We learned the crucial idea of polynomial-time reduction. This
can be even used in algorithm design, e.g., we know how to
solve max-flow so we reduce image segmentation to max-flow

• NP-Complete problems are the hardest problem in NP

• NP-hard problems may not necessarily belong to NP.

• Polynomial-time reductions are transitive relations

23

