CSE 421

LP Duality

Shayan Oveis Gharan

Intro to Duality

$$
\begin{array}{cc}
\max & x_{1}+2 x_{2} \\
\text { s.t., } & x_{1}+3 x_{2} \leq 2 \\
& 2 x_{1}+2 x_{2} \leq 3 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

Optimum solution: $x_{1}=5 / 4$ and $x_{2}=1 / 4$ with value $x_{1}+2 x_{2}=7 / 4$ How can you prove an upper-bound on the optimum?

First attempt: Since $x_{1}, x_{2} \geq 0$

$$
x_{1}+2 x_{2} \leq x_{1}+3 x_{2} \leq 2
$$

Second attempt:

$$
x_{1}+2 x_{2} \leq \frac{2}{3}\left(x_{1}+3 x_{2}\right)+\frac{1}{3}\left(2 x_{1}+2 x_{2}\right) \leq \frac{2}{3}(2)+\frac{1}{3}(3)=\frac{7}{3}
$$

Third attempt:

$$
x_{1}+2 x_{2} \leq \frac{1}{2}\left(x_{1}+3 x_{2}\right)+\frac{1}{4}\left(2 x_{1}+2 x_{2}\right) \leq \frac{1}{2}(2)+\frac{1}{4}(3)=\frac{7}{4}
$$

Dual Certificate

$$
\begin{array}{lcc}
\max & x_{1}+2 x_{2} & \\
\text { s.t., } & x_{1}+3 x_{2} \leq 2 & y_{1} \\
& 2 x_{1}+2 x_{2} \leq 3 & y_{2} \\
& x_{1}, x_{2} \geq 0 &
\end{array}
$$

Goal: Minimize $2 y_{1}+3 y_{2}$
But, we must make sure the sum of the LHS is least the objective, i.e.,

$$
x_{1}+2 x_{2} \leq y_{1}\left(x_{1}+3 x_{2}\right)+y_{2}\left(2 x_{1}+2 x_{2}\right)
$$

In other words,

$$
\begin{aligned}
& 1 \leq 1 \cdot y_{1}+2 \cdot y_{2} \\
& 2 \leq 3 \cdot y_{1}+2 \cdot y_{2}
\end{aligned}
$$

Finally, $y_{1}, y_{2} \geq 0$ (else the direction of inequalities change)

Dual Program

$$
\begin{array}{cc}
\max & x_{1}+2 x_{2} \\
\text { s.t., } & x_{1}+3 x_{2} \leq 2 \\
& 2 x_{1}+2 x_{2} \leq 3 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

OPT: $x_{1}=5 / 4$ and $x_{2}=1 / 4$ Value 7/4
$\min \quad 2 y_{1}+3 y_{2}$
s.t., $\quad y_{1}+2 y_{2} \geq 1$
$3 y_{1}+2 y_{2} \geq 2$
$y_{1}, y_{2} \geq 0$
OPT: $y_{1}=1 / 2$ and $y_{2}=1 / 4$
Value $7 / 4$

Dual of Standard LP

\max	$\langle c, x\rangle$	
s.t.,	$\left\langle a_{1}, x\right\rangle \leq b_{1}$	y_{1}
	$\left\langle a_{2}, x\right\rangle \leq b_{2}$	y_{2}
	\vdots	
	$\left\langle a_{m}, x\right\rangle \leq b_{m}$	y_{m}
	$x_{1}, \ldots, x_{n} \geq 0$	

$$
\begin{array}{cc}
\min & \langle b, y\rangle \\
\text { s.t., } & a_{1,1} y_{1}+\cdots+a_{m, 1} y_{m} \geq c_{1} \\
& a_{1,2} y_{1}+\cdots+a_{m, 2} y_{m} \geq c_{2} \\
& \vdots \\
& a_{1, n} y_{1}+\cdots+a_{m, n} y_{m} \geq c_{n} \\
& y_{1}, \ldots, y_{m} \geq 0
\end{array}
$$

\max	$\langle c, x\rangle$
s.t.,	$A x \leq b$
	$x \geq 0$

Primal

$$
\begin{array}{cc}
\hline \min & \langle b, y\rangle \\
\text { s.t., } & A^{T} y \geq c \\
& y \geq 0 \\
\hline & \text { Dual }
\end{array}
$$

Facts About Linear Programs

Lem: Dual of Dual = Primal

Thm (weak duality): Every solution to the primal is at most every solution to the dual

$$
\langle c, x\rangle \leq\langle b, y\rangle
$$

Thm (strong duality): If primal has a solution and dual has a solution then optimum of primal is equal to optimum of dual

Dual of Max-Flow

$$
\begin{array}{llll}
\max & \sum_{e \text { out of } s} x_{e} & & \\
\text { s.t. } & \sum_{\text {e out of } v} x_{e}=\sum_{\text {e in to } v} x_{e} & \forall v \neq s, t & b_{v} \\
& x_{e} \leq c(e) & \forall e & a_{e} \\
& x_{e} \geq 0 & \forall e &
\end{array}
$$

min
s.t.,

$$
\begin{array}{cc}
\langle c, a\rangle & \\
a_{e}+b_{v} \geq 1 & e=(s, v) \\
a_{e}-b_{v} \geq 0 & e=(v, t) \\
a_{e}+b_{u}-b_{v} \geq 0 & \text { other } e=(u, v) \\
a_{e} \geq 0 & \forall e
\end{array}
$$

$$
\begin{array}{ccc}
\min & \langle c, a\rangle & \\
\text { s.t., } & a_{e}+b_{v} \geq 1 & e=(s, v) \\
& a_{e}-b_{v} \geq 0 & e=(v, t) \\
& a_{e}+b_{u}-b_{v} \geq 0 & \text { other } e=(u, v) \\
& a_{e} \geq 0 & \forall e
\end{array}
$$

$$
\begin{array}{lcc}
\min & \langle c, a\rangle & \\
\text { s.t. }, & a_{e}=\max \left(0,1-b_{v}\right) & e=(s, v) \\
& a_{e}=\max \left(0, b_{v}\right) & e=(v, t) \\
& a_{e}=\max \left(0, b_{v}-b_{u}\right) & \text { other } e=(u, v)
\end{array}
$$

\min $\langle c, a\rangle$
s.t.,

$$
\begin{array}{cc}
a_{e}=\max \left(0,1-b_{v}\right) & e=(s, v) \\
a_{e}=\max \left(0, b_{v}\right) & e=(v, t) \\
a_{e}=\max \left(0, b_{v}-b_{u}\right) & \text { other } e=(u, v)
\end{array}
$$

Lem: In OPT $0 \leq b_{v} \leq 1$ for all v Pf: If not, move up/down the value only decreases

$$
b_{s}=1
$$

s.t.,

$$
\begin{aligned}
& b_{s}=1, b_{t}=0 \\
& \quad 0 \leq b_{v} \leq 1 \\
& a_{e}=\max \left(0, b_{v}-b_{u}\right) \quad e=(u, v)
\end{aligned}
$$

Lem: \ln OPT $0 \leq b_{v} \leq 1$ for all v
Pf: If not, move up/down the value only decreases

Lem: In OPT $b_{v} \in\{0,1\}$ for all v Pf: If not, choose a u.r. $0 \leq t \leq 1$ If $b_{v} \geq t$ set $b_{v}=1$ else set $b_{v}=0$.
Then, the expected value of resulting solution sames as OPT.

$$
b_{t}=0
$$

min

$$
\begin{aligned}
& \langle c, a\rangle \\
& b_{s}=1, b_{t}=0 \\
& 0 \leq b_{v} \leq 1 \\
& a_{e}=\max \left(0, b_{v}-b_{u}\right) \quad \text { other } e=(u, v)
\end{aligned}
$$

s.t. ,

Lem: \ln OPT $0 \leq b_{v} \leq 1$ for all v
Pf: If not, move up/down the value only decreases

Lem: In OPT $b_{v} \in\{0,1\}$ for all v Pf: If not, choose a u.r. $0 \leq t \leq 1$ If $b_{v} \geq t$ set $b_{v}=1$ else set $b_{v}=0$.
Then, the expected value of resulting solution sames as OPT.
$b_{s}=1$

$$
b_{t}=0
$$

$$
\begin{array}{ll}
\min & \langle c, a\rangle \\
\text { s.t. } & b_{s}=1, b_{t}=0 \\
& b_{v} \in\{0,1\} \\
& a_{e}=\max \left(0, b_{v}-b_{u}\right) \quad \text { other } e=(u, v)
\end{array}
$$

Min Cut!

Beyond LP: Convex Programming

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is convex if $f^{\prime \prime} \geq 0$.
e.g., $f(x)=x^{2}$.

A function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex if $\nabla^{2} f \succcurlyeq 0$

$$
\begin{array}{lc}
\text { min } & f(x) \\
\text { s.t., } & g_{1}(x) \leq b_{1} \\
& g_{2}(x) \leq b_{2} \\
& \vdots \\
& g_{m}(x) \leq b_{m}
\end{array}
$$

f and g_{1}, \ldots, g_{m} must be convex.
\geq and $=$ are not allows!

Example

$$
\begin{array}{cc}
\max & c_{1} x_{1}+c_{2} x_{2} \\
\text { s.t. } & x_{1}^{2}+x_{2}^{2} \leq 1
\end{array}
$$

Summary (Linear Programming)

- Linear programming is one of the biggest advances in $20^{\text {th }}$ century
- It is being used in many areas of science: Mechanics, Physics, Operations Research, and in CS: AI, Machine Learning, Theory, ...
- Almost all problems that we talked can be solved with LPs, Why not use LPs?
- Combinatorial algorithms are typically faster
- They exhibit a better understanding of worst case instances of a problem
- They give certain structural properties, e.g., Integrality of Max-flow when capacities are integral
- There is rich theory of LP-duality which generalizes max-flow min-cut theorem

Reductions \& NP-Completeness

Computational Complexity

Goal: Classify problems according to the amount of computational resources used by the best algorithms that solve them
Here we focus on time complexity

Recall: worst-case running time of an algorithm

- max \# steps algorithm takes on any input of size \mathbf{n}

Computational Complexity and Reduction

In most cases, we cannot characterize the true hardness of a computational problem
So?
We only reduce the number of problems

Want to be able to make statements of the form

- "If we could solve problem B in polynomial time then we can solve problem A in polynomial time"
- "Problem B is at least as hard as problem A"

Polynomial Time Reduction

Def $\mathrm{A} \leq_{p} \mathrm{~B}$: if there is an algorithm for problem A using a 'black box' (subroutine) that solve problem B s.t.,

- Algorithm uses only a polynomial number of steps
- Makes only a polynomial number of calls to a subroutine for B

So,

B is Polynomial time solvable

Conversely,

In words, B is as hard as A (it can be even harder)

\leq_{p}^{1} Reductions

In this lecture we see a restricted form of polynomial-time reduction often called Karp or many-to-one reduction
$A \leq_{p}^{1} B$: if and only if there is an algorithm for A given a black box solving B that on input x

- Runs for polynomial time computing an input $f(x)$ of B
- Makes one call to the black box for B for input $f(x)$
- Returns the answer that the black box gave

We say that the function $f($.$) is the reduction$

Decision Problems

A decision problem is a computational problem where the answer is just yes/no

Here, we study computational complexity of decision Problems.
Why?

- much simpler to deal with
- Decision version is not harder than Search version, so it is easier to lower bound Decision version
- Less important, usually, you can use decider multiple times to find an answer .

Example 1: Indep Set \leq_{p} Clique

Indep Set: Given $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and an integer k , is there $S \subseteq V$ s.t. $|S| \geq k$ an no two vertices in S are joined by an edge?

Clique: Given a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and an integer k , is there $S \subseteq V$, $|U| \geq k$ s.t., every pair of vertices in S is joined by an edge?

Claim: Indep Set \leq_{p} Clique
Pf: Given $G=(V, E)$ and instance of indep Set. Construct a new graph $G^{\prime}=\left(V, E^{\prime}\right)$ where $\{u, v\} \in E^{\prime}$ if and only if $\{u, v\} \notin E$.

Example 2: Vertex Cover \leq_{p} Indep Set

Vertex Cover: Given a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and an integer k , is there a vertex cover of size at most k ?

Claim: For any graph $G=(V, E)$, S is an independent set iff $V-S$ is a vertex cover
Pf:
=> Let S be a independent set of G
Then, S has at most one endpoint of every edge of G
So, $V-S$ has at least one endpoint of every edge of G
So, $V-S$ is a vertex cover.
<= Suppose $V-S$ is a vertex cover
Then, there is no edge between vertices of S (otherwise, $V-S$ is not a vertex cover)
So, S is an independent set.

Example 3: Vertex Cover \leq_{p} Set Cover

Set Cover: Given a set U, collection of subsets S_{1}, \ldots, S_{m} of U and an integer k, is there a collection of k sets that contain all elements of U ?

Claim: Vertex Cover \leq_{p} Set Cover
Pf:
Given $(G=(V, E), k)$ of vertex cover we construct a set cover input $f(G, k)$

- $U=E$
- For each $v \in V$ we create a set S_{v} of all edges connected to v

This clearly is a polynomial-time reduction
So, we need to prove it gives the right answer

Example 3: Vertex Cover \leq_{p} Set Cover

Claim: Vertex Cover \leq_{p} Set Cover
Pf: Given $(G=(V, E), k)$ of vertex cover we construct a set cover input $f(G, k)$

- $U=E$
- For each $v \in V$ we create a set S_{v} of all edges connected to v

Vertex-Cover (G, k) is yes => Set-Cover $f(G, k)$ is yes
If a set $W \subseteq V$ covers all edges,, just choose S_{v} for all $v \in W$, it covers all U.

Set-Cover $f(G, k)$ is yes => Vertex-Cover (G, k) is yes
If $\left(S_{v_{1}}, \ldots, S_{v_{k}}\right)$ covers all U, the set $\left\{v_{1}, \ldots, v_{k}\right\}$ covers all edges of G.

