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Intro to Duality
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max 𝑥! + 2𝑥"
s. t. , 𝑥! + 3𝑥" ≤ 2

2𝑥! + 2𝑥" ≤ 3
𝑥!, 𝑥" ≥ 0

Optimum solution: 𝑥! = 5/4 and 𝑥" = 1/4  with value 𝑥! + 2𝑥" = 7/4
How can you prove an upper-bound on the optimum?

First attempt: Since 𝑥!, 𝑥" ≥ 0
𝑥! + 2𝑥" ≤ 𝑥! + 3𝑥" ≤ 2 

Second attempt: 

𝑥! + 2𝑥" ≤
2
3
𝑥! + 3𝑥" +

1
3
2𝑥! + 2𝑥" ≤

2
3
2 +

1
3
3 =

7
3

Third attempt: 

𝑥! + 2𝑥" ≤
1
2 𝑥! + 3𝑥" +

1
4 2𝑥! + 2𝑥" ≤

1
2 (2) +

1
4 (3) =

7
4



Dual Certificate

Goal: Minimize 2𝑦! + 3𝑦"

But, we must make sure the sum of the LHS is least the 
objective, i.e.,

𝑥! + 2𝑥" ≤ 𝑦! 𝑥! + 3𝑥" + 𝑦" 2𝑥! + 2𝑥"
In other words,

1 ≤ 1 ⋅ 𝑦! + 2 ⋅ 𝑦"
2 ≤ 3 ⋅ 𝑦! + 2 ⋅ 𝑦"

Finally, 𝑦!, 𝑦" ≥ 0 (else the direction of inequalities change)
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𝑚𝑎𝑥 𝑥! + 2𝑥"
𝑠. 𝑡. , 𝑥! + 3𝑥" ≤ 2

2𝑥! + 2𝑥" ≤ 3
𝑥!, 𝑥" ≥ 0

𝑦!
𝑦"



Dual Program
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max 𝑥! + 2𝑥"
s. t. , 𝑥! + 3𝑥" ≤ 2

2𝑥! + 2𝑥" ≤ 3
𝑥!, 𝑥" ≥ 0

min 2𝑦! + 3𝑦"
s. t. , 𝑦! + 2𝑦" ≥ 1

3𝑦! + 2𝑦" ≥ 2
𝑦!, 𝑦" ≥ 0

OPT: 𝑥! = 5/4 and 𝑥" = 1/4
Value 7/4

OPT: 𝑦! = 1/2 and 𝑦" = 1/4
Value 7/4



Dual of Standard LP
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max 𝑐, 𝑥
s. t. , 𝑎!, 𝑥 ≤ 𝑏!

𝑎", 𝑥 ≤ 𝑏"
⋮

𝑎#, 𝑥 ≤ 𝑏#
𝑥!, … , 𝑥$ ≥ 0

min 𝑏, 𝑦
s. t. , 𝑎!,!𝑦! +⋯+ 𝑎#,!𝑦# ≥ 𝑐!

𝑎!,"𝑦! +⋯+ 𝑎#,"𝑦# ≥ 𝑐"
⋮

𝑎!,$𝑦! +⋯+ 𝑎#,$𝑦# ≥ 𝑐$
𝑦!, … , 𝑦# ≥ 0

𝑦!
𝑦"

𝑦#

𝑚𝑎𝑥 ⟨𝑐, 𝑥⟩
s. t. , 𝐴𝑥 ≤ 𝑏

𝑥 ≥ 0

𝑚𝑖𝑛 ⟨𝑏, 𝑦⟩
s. t. , 𝐴$𝑦 ≥ 𝑐

𝑦 ≥ 0

Primal Dual



Facts About Linear Programs

Lem: Dual of Dual = Primal

Thm (weak duality): Every solution to the primal is at most every 
solution to the dual

𝑐, 𝑥 ≤ 𝑏, 𝑦

Thm (strong duality): If primal has a solution and dual has a 
solution then optimum of primal is equal to optimum of dual
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Dual of Max-Flow
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max 	 =
&	()*	(+	,

𝑥&

𝑠. 𝑡. 	 =
&	-./	-0	1

𝑥& ==
&	2$	/-	1

𝑥& 	 ∀𝑣 ≠ 𝑠, 𝑡

	 𝑥& ≤ 𝑐 𝑒 	 ∀𝑒	
𝑥& ≥ 0	 ∀𝑒

min 𝑐, 𝑎
s. t. , 𝑎& + 𝑏1 ≥ 1 𝑒 = (𝑠, 𝑣)	

𝑎& − 𝑏1 ≥ 0 𝑒 = (𝑣, 𝑡)
𝑎& + 𝑏. − 𝑏1 ≥ 0 other	𝑒 = 𝑢, 𝑣

𝑎& ≥ 0 ∀𝑒	

𝑎%

𝑏&
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min 𝑐, 𝑎
s. t. , 𝑎% + 𝑏& ≥ 1 𝑒 = (𝑠, 𝑣)

𝑎% − 𝑏& ≥ 0 𝑒 = (𝑣, 𝑡)
𝑎% + 𝑏' − 𝑏& ≥ 0 other	𝑒 = 𝑢, 𝑣

𝑎% ≥ 0 ∀𝑒	

min 𝑐, 𝑎
s. t. , 𝑎% = max(0,1 − 𝑏&) 𝑒 = (𝑠, 𝑣)

𝑎% = max(0, 𝑏&) 𝑒 = 𝑣, 𝑡
𝑎% = max(0, 𝑏& − 𝑏') other	𝑒 = (𝑢, 𝑣)	
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𝑏( = 1

𝑏) = 0

Lem: In OPT 0 ≤ 𝑏& ≤ 1 for all v
Pf: If not, move up/down the 
value only decreases

min 𝑐, 𝑎
s. t. , 𝑎% = max(0,1 − 𝑏&) 𝑒 = (𝑠, 𝑣)

𝑎% = max(0, 𝑏&) 𝑒 = 𝑣, 𝑡
𝑎% = max(0, 𝑏& − 𝑏') other	𝑒 = (𝑢, 𝑣)	
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min 𝑐, 𝑎
s. t. , 𝑏( = 1, 𝑏) = 0

0 ≤ 𝑏& ≤ 1
𝑎% = max 0, 𝑏& −𝑏' 𝑒 = 𝑢, 𝑣

𝑏( = 1

𝑏) = 0

Lem: In OPT 0 ≤ 𝑏& ≤ 1 for all v

Pf: If not, move up/down the 
value only decreases

Lem: In OPT 𝑏& ∈ {0,1} for all v
Pf: If not, choose a u.r. 0 ≤ 𝑡 ≤ 1
If 𝑏& ≥ 𝑡 set 𝑏& = 1 else set 𝑏& = 0.
Then, the expected value of 
resulting solution sames as OPT.
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min 𝑐, 𝑎
s. t. , 𝑏( = 1, 𝑏) = 0

0 ≤ 𝑏& ≤ 1
𝑎% = max 0, 𝑏& −𝑏' other	𝑒 = 𝑢, 𝑣

𝑏( = 1

𝑏) = 0

Lem: In OPT 0 ≤ 𝑏& ≤ 1 for all v

Pf: If not, move up/down the 
value only decreases

Lem: In OPT 𝑏& ∈ {0,1} for all v
Pf: If not, choose a u.r. 0 ≤ 𝑡 ≤ 1
If 𝑏& ≥ 𝑡 set 𝑏& = 1 else set 𝑏& = 0.
Then, the expected value of 
resulting solution sames as OPT.
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min 𝑐, 𝑎
s. t. , 𝑏( = 1, 𝑏) = 0

𝑏& ∈ {0,1}
𝑎% = max 0, 𝑏& −𝑏' other	𝑒 = 𝑢, 𝑣

Min Cut!



Beyond LP: Convex Programming

A function 𝑓:ℝ → ℝ is convex if 𝑓33 ≥ 0.

e.g., 𝑓 𝑥 = 𝑥".

A function 𝑓:ℝ4 → ℝ is convex if ∇"𝑓 ≽ 0

13

min 𝑓 𝑥
s. t. , 𝑔! 𝑥 ≤ 𝑏!

𝑔" 𝑥 ≤ 𝑏"
⋮

𝑔# 𝑥 ≤ 𝑏#

Convex Program

𝑓 and 𝑔!, … , 𝑔# must be convex.
≥ and = are not allows!



Example
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max 𝑐!𝑥! + 𝑐"𝑥"
s. t. , 𝑥!" + 𝑥"" ≤ 1

𝑐

𝑥!

𝑥"



Summary (Linear Programming)

• Linear programming is one of the biggest advances in 20th 
century

• It is being used in many areas of science: Mechanics, 
Physics, Operations Research, and in CS: AI, Machine 
Learning, Theory, …

• Almost all problems that we talked can be solved with LPs, 
Why not use LPs?
• Combinatorial algorithms are typically faster
• They exhibit a better understanding of worst case instances of a 

problem
• They give certain structural properties, e.g., Integrality of Max-flow when 

capacities are integral

• There is rich theory of LP-duality which generalizes max-flow 
min-cut theorem
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Reductions & NP-Completeness



Computational Complexity

Goal: Classify problems according to the amount of 
computational resources used by the best algorithms that 
solve them
   Here we focus on time complexity

Recall:  worst-case running time of an algorithm 
• max # steps algorithm takes on any input of size n
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Computational Complexity and Reduction

In most cases, we cannot characterize the true hardness of 
a computational problem
So?
   We only reduce the number of problems

Want to be able to make statements of the form
• “If we could solve problem B in polynomial  time then we 

can solve problem A in polynomial time”
• “Problem B is at least as hard as problem A”
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Polynomial Time Reduction

Def A £P
 B: if there is an algorithm for problem A using a 

‘black box’ (subroutine) that solve problem B s.t.,
• Algorithm uses only a polynomial number of steps 
• Makes only a polynomial number of calls to a subroutine for B

So, 

Conversely,

In words, B is as hard as A (it can be even harder)

19

B is Polynomial
time solvable

A is Polynomial
time solvable

No efficient 
Algorithm for A

No efficient 
Algorithm for B



≤!"  Reductions

In this lecture we see a restricted form of polynomial-time 
reduction often called Karp or many-to-one reduction

𝐴 ≤#! 𝐵: if and only if there is an algorithm for A given a 
black box solving B that on input x
• Runs for polynomial time computing an input f(x) of B
• Makes one call to the black box for B for input f(x)
• Returns the answer that the black box gave

We say that the function f(.) is the reduction
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Decision Problems

A decision problem is a computational problem where the 
answer is just yes/no

Here, we study computational complexity of decision Problems.

Why?
• much simpler to deal with
• Decision version is not harder than Search version, so it is 

easier to lower bound Decision version
• Less important, usually, you can use decider multiple times to 

find an answer .  
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Indep Set: Given G=(V,E) and an integer k, is there 𝑆 ⊆ 𝑉 s.t.
𝑆 ≥ 𝑘 an no two vertices in S are joined by an edge?

Clique: Given a graph G=(V,E) and an integer k, is there 𝑆 ⊆ 𝑉, 
|U| ³ k s.t., every pair of vertices in S is joined by an edge?
Claim: Indep Set ≤5 Clique
Pf: Given 𝐺 = (𝑉, 𝐸) and instance of indep Set. Construct a new 
graph 𝐺3 = (𝑉, 𝐸3) where 𝑢, 𝑣 ∈ 𝐸′ if and only if 𝑢, 𝑣 ∉ 𝐸.

Example 1: Indep Set ≤! Clique
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S is an independent
set in G

S is an Clique
 in G’

1

2

3 4

5

1

2

3 4

5



Example 2: Vertex Cover ≤! Indep Set

Vertex Cover: Given a graph G=(V,E) and an integer k, is there a 
vertex cover of size at most k?
Claim: For any graph 𝐺 = 𝑉, 𝐸 , S is an independent set iff    
𝑉 − 𝑆 is a vertex cover
Pf: 
=> Let S be a independent set of G
Then, 𝑆 has at most one endpoint of every edge of G
So, 𝑉 − 𝑆 has at least one endpoint of every edge of G
So, 𝑉 − 𝑆 is a vertex cover.

<= Suppose 𝑉 − 𝑆 is a vertex cover
Then, there is no edge between vertices of S (otherwise, 𝑉 − 𝑆 is 
not a vertex cover)
So, 𝑆 is an independent set.
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Example 3: Vertex Cover ≤! Set Cover

Set Cover: Given a set U, collection of subsets 𝑆!, … , 𝑆# of U and 
an integer k, is there a collection of k sets that contain all 
elements of U?
Claim: Vertex Cover ≤5 Set Cover
Pf: 
Given (𝐺 = 𝑉, 𝐸 , 𝑘) of vertex cover we construct a set cover 
input 𝑓(𝐺, 𝑘)
• 𝑈 = 𝐸
• For each 𝑣 ∈ 𝑉 we create a set 𝑆1 of all edges connected to 𝑣

This clearly is a polynomial-time reduction

So, we need to prove it gives the right answer
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Example 3: Vertex Cover ≤! Set Cover

Claim: Vertex Cover ≤5 Set Cover
Pf: Given (𝐺 = 𝑉, 𝐸 , 𝑘) of vertex cover we construct a set cover 
input 𝑓(𝐺, 𝑘)
• 𝑈 = 𝐸
• For each 𝑣 ∈ 𝑉 we create a set 𝑆1 of all edges connected to 𝑣

Vertex-Cover (G,k) is yes => Set-Cover f(G,k) is yes
   If a set 𝑊 ⊆ 𝑉 covers all edges,, just choose 𝑆1 for all 𝑣 ∈ 𝑊, it 
covers all 𝑈.

Set-Cover f(G,k) is yes => Vertex-Cover (G,k) is yes
   If (𝑆1! , … , 𝑆1") covers all 𝑈, the set {𝑣!, … , 𝑣6} covers all edges 
of G.
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