CSE 421

LP Duality

Shayan Oveis Gharan

Intro to Duality

max X1 + 2x5
s.t., x1+3x, <2
2x1 +2x, <3

X1,Xp =0

Optimum solution: x; = 5/4 and x, = 1/4 with value x; + 2x, = 7/4
How can you prove an upper-bound on the optimum?

First attempt: Since x4,x, = 0
X1+ 2x, <x1+3x, <2

Second attempt:
7
X1+ 2x, < (x1 + 3x,) + = (2x1 + 2x,) < = (2) + — (3) =3
Third attempt:
1
X1+ 2%y < (x1 + 3x5) + — (2x1 + 2x,) < = (2) + 1(3) = —

Dual Certificate

max x1 + 2x,
s.t., x;+3x, <2 V1
2x1 + 2x, <3 Y2

X1,X2 =0

Goal: Minimize 2y, + 3y,

But, we must make sure the sum of the LHS is least the
objective, i.e.,
X1+ Z.X'Z < yl(xl + 3X2) + yz(le + ZXZ)
In other words,
Finally, y;,y, = 0 (else the direction of inequalities change)

Dual Program

max X1 + 2x5
s.t., x1+3x, <2
2x1 + 2x, < 3

X1,Xy = 0

OPT. x; =5/4and x, = 1/4
Value 7/4

min 2y, + 3y,
s.t., y;+2y, =1
3y, + 2y, = 2

V1, Y2 20

OPT.y;, =1/2and y, = 1/4
Value 7/4

Dual of Standard LP

max (c,x)
s.t., {(ay,x) < by
<a21x> S b2

(am;x> S bm
X1y Xy =0

max {c,Xx)
s.t., Ax<b
x =0

Primal

V1
Y2

Ym

min (b,y)
s.t., ay1tt+apiym=¢

A12Y1 + o+ Ap2Ym = C

A1 nY1 Tt AmnYm => Cn

Vi) oy Vm = 0
min (b, y)
s.t., Aly>c
y=0
Dual

Facts About Linear Programs

Lem: Dual of Dual = Primal

Thm (weak duality): Every solution to the primal is at most every
solution to the dual
(c,x) <(b,y)

Thm (strong duality): If primal has a solution and dual has a
solution then optimum of primal is equal to optimum of dual

Dual of Max-Flow

max Z xe
e outofs

S.t. z xe=z X Vv FS,t
eoutof v eintov

x, < c(e) Ve

Xe = 0 Ve
min (c,a)

s.t., a, +b, =1 e = (s,v)

ae — b, =0 e=t)

a, + b, —b, >0 othere = (u,v)
a, = 0 Ve

b,

Ae

min (c,a)

s.t., e + by, =1 e = (s,v)
ae — b, =0 e =(v,t)
a, + b, — b, >0 othere = (u,v)
a, =0 Ve

Vs

min (c,a)
s.t., a, =max(0,1—b,) e =(s,v)
a, = max(0, b,) e=(vt)

a, = max(0,b, — b,) othere = (u,v)

min (c,a)
s.t., a, =max(0,1—b,) e = (s,v)
a, = max(0, b,) e =(v,t)
a, = max(0,b, — b,) othere = (u,v)

Lem:In OPT 0 < b, <1 forallv
Pf. If not, move up/down the
value only decreases

min (c,a)
S.t., bS=1,bt=0
0<b,<1

a, = max(0,b, —b,) e = (u,v)

Lem:InOPT 0 < b, <1forallv

Pf. If not, move up/down the
value only decreases

Lem: In OPT b, € {0,1} for all v

Pf. If not, chooseaur. 0 <t <1

If b, >t setb, =1 else set b, = 0.
Then, the expected value of
resulting solution sames as OPT.

10

min (c,a)
s.t., b =1,b =0
0<b,<1
a, = max(0, b, —b,) othere = (u,v)

Lem:InOPT 0 < b, <1forallv

Pf. If not, move up/down the
value only decreases

Lem: In OPT b, € {0,1} for all v

Pf: If not, chooseaur. 0<t<1

If b, >t setb, =1 else set b, = 0.
Then, the expected value of
resulting solution sames as OPT.

b =1
A MAiA%
®

O
O
O
e ©

11

min
S. t.,

(c,a)
b, =1,b; =0
b, € {0,1}
a, = max(0, b, —b,) othere = (u,v)

Min Cut!

12

Beyond LP: Convex Programming

A function f:R - R is convex if f" = 0.

e.g., f(x) = x=.

A function f: R% - R is convex if V2f = 0

min f(x)
S. t., gl(X) < bl
Convex Program g2(x) < b,
Im(x) < by,

f and g4, ..., g, must be convex.

> and = are not allows!

13

max
S.t.,

Example

C1X1 —+ CrX»
x4+ x5 <1

14

Summary (Linear Programming)

Linear programming is one of the biggest advances in 20%
century

It is being used in many areas of science: Mechanics,
Physics, Operations Research, and in CS: Al, Machine
Learning, Theory, ...

Almost all problems that we talked can be solved with LPs,
Why not use LPs?

Combinatorial algorithms are typically faster

« They exhibit a better understanding of worst case instances of a
problem

« They give certain structural properties, e.g., Integrality of Max-flow when
capacities are integral

There is rich theory of LP-duality which generalizes max-flow
min-cut theorem
15

Reductions & NP-Completeness

Computational Complexity

Goal: Classify problems according to the amount of
computational resources used by the best algorithms that
solve them

Here we focus on time complexity

Recall: worst-case running time of an algorithm
* max # steps algorithm takes on any input of size n

17

Computational Complexity and Reduction

In most cases, we cannot characterize the true hardness of
a computational problem

S0?
We only reduce the number of problems

Want to be able to make statements of the form

« “If we could solve problem B in polynomial time then we
can solve problem A in polynomial time”

* “Problem B is at least as hard as problem A”

18

Polynomial Time Reduction

Def A <; B: if there is an algorithm for problem A using a
‘black box’ (subroutine) that solve problem B s.t.,

» Algorithm uses only a polynomial number of steps
« Makes only a polynomial number of calls to a subroutine for B

B is Polynomial Ais Polynomial
[time solvable] ‘ [time solvable]
Conversely,
No efficient ‘ No efficient
{Algorithm for A] [Algorithm for B]

In words, B is as hard as A (it can be even harder)

So,

19

<;, Reductions

In this lecture we see a restricted form of polynomial-time
reduction often called Karp or many-to-one reduction

A s% B: if and only if there is an algorithm for A given a
black box solving B that on input x

* Runs for polynomial time computing an input f(x) of B

« Makes one call to the black box for B for input f(x)

* Returns the answer that the black box gave

We say that the function f(.) is the reduction

20

Decision Problems

A decision problem is a computational problem where the
answer is just yes/no

Here, we study computational complexity of decision Problems.

Why?
 much simpler to deal with

. Dec_ision version is not har_d_er than _Search version, so itis
easier to lower bound Decision version

« Less important, usually, you can use decider multiple times to
find an answer .

21

Example 1: Indep Set <,, Clique

Indep Set: Given G=(V,E) and an integer k, is there S € V s.t.
|S| = k an no two vertices in S are joined by an edge?

Clique: Given a graph G=(V,E) and an integer k, is there S C V/,
|U| > k s.t., every pair of vertices in S is joined by an edge?

Claim: Indep Set <, Clique

Pf. Given ¢ = (V, E) and instance of indep Set. Construct a new
graph ¢' = (V,E") where {u,v} € E' if and only if {u,v} ¢ E.

(D
) 5
® @

S is an independent S is an Clique
setin G ﬁ in G’

22

Example 2: Vertex Cover <, Indep Set

Vertex Cover: Given a graph G=(V,E) and an integer k, is there a
vertex cover of size at most k?

Claim: For any graph ¢ = (V,E), S is an independent set iff
V — S is a vertex cover

Pf:

=> Let S be a independent set of G

Then, S has at most one endpoint of every edge of G
So, V — S has at least one endpoint of every edge of G
So, V — S is a vertex cover.

<= Suppose VV — § is a vertex cover

Then, there is no edge between vertices of S (otherwise, V — S is
not a vertex cover)

So, S is an independent set.

23

Example 3: Vertex Cover <, Set Cover

Set Cover: Given a set U, collection of subsets §;, ..., S,,, of U and
an integer Kk, is there a collection of k sets that contain all
elements of U?

Claim: Vertex Cover <,, Set Cover

Pf:

Given (G = (V,E), k) of vertex cover we construct a set cover

input (G, k)

o UU=F

 Foreach v € V we create a set S, of all edges connected to v
This clearly is a polynomial-time reduction

So, we need to prove it gives the right answer

24

Example 3: Vertex Cover <, Set Cover

Claim: Vertex Cover <,, Set Cover

Pf. Given (G = (V, E), k) of vertex cover we construct a set cover
input (G, k)

e U=E

 For each v € V we create a set S, of all edges connected to v

Vertex-Cover (G,k) is yes => Set-Cover f(G,k) is yes
If a set W € V covers all edges,, just choose S, forall v e W, it
covers all U.

Set-Cover f(G,k) is yes => Vertex-Cover (G,k) is yes

If (Sy,,...,Sy,,) covers all U, the set {v,, ..., v} covers all edges
of G.

25

