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Linear Programming 
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System of Linear Equations

Find a solution to

	 𝑥!−𝑥" = 4
	 𝑥! − 2𝑥# = 3
	 𝑥" + 2𝑥# + 𝑥! = 7

 
Can be solved by Gaussian elimination method in 𝑂 𝑛!  
when we have n variables/n constraints
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Linear Algebra Premier

Let 𝑎 be a column vector in ℝ! and 𝑥 a column vector of 𝑑 
variables.

𝑎, 𝑥 = 𝑎"𝑥 = 𝑎#𝑥# + 𝑎$𝑥$ +⋯+ 𝑎!𝑥!

Hyperplane: A hyperplane is the set of points 𝑥 such that ⟨𝑎, 𝑥⟩ =
𝑏 for some 𝑏 ∈ ℝ

Halfspace: A halfspace is the set of points on one side of a 
hyperplane. 

𝑥: 𝑎, 𝑥 ≤ 𝑏 	 𝑜𝑟	 {𝑥: 𝑎, 𝑥 ≥ 𝑏}

4



5

3𝑥! + 𝑥" = 0

𝑥"

𝑥!

𝑎 =
1
3
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3𝑥! + 𝑥" ≤ 0

𝑥"

𝑥!

𝑎 =
1
3
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3𝑥! + 𝑥" ≤ −3

𝑥"

𝑥!

𝑎 =
1
3
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Find the smallest point in a polytope
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𝑎", 𝑥
≤ 𝑏"

𝑎
! , 𝑥

≥
𝑏
!

𝑎"

𝑎!

𝑎 #
, 𝑥
≥
𝑏 #

𝑎#

min 𝑥!
s. t. , 𝑎", 𝑥 ≤ 𝑏"

𝑎!, 𝑥 ≥ 𝑏!
𝑎#, 𝑥 ≥ 𝑏#

…

𝑐



Linear Programming

Optimize a linear function subject to linear inequalities

max	 3𝑥" − 4𝑥!
𝑠. 𝑡. , 	 𝑥"+𝑥# ≤ 5
	 𝑥!−𝑥" = 4
	 𝑥! − 𝑥# ≥ −5
	 𝑥", 𝑥#, 𝑥! ≥ 0

• We can have equalities and inequalities, 
• We can have a linear objective functions
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Linear Algebra Premier

Let 𝑎 be a column vector in ℝ! and 𝑥 a column vector of 𝑑 
variables.

𝑎, 𝑥 = 𝑎"𝑥 = 𝑎#𝑥# + 𝑎$𝑥$ +⋯+ 𝑎!𝑥!
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𝐴 =

𝑎"$

𝑎!$
⋮
𝑎%$

𝐴𝑥 =
⟨𝑎", 𝑥⟩
⟨𝑎!, 𝑥⟩
⋮

⟨𝑎%, 𝑥⟩

𝐴𝑥 ≤ 𝑏	

𝑎", 𝑥 ≤ 𝑏"
𝑎!, 𝑥 ≤ 𝑏!

⋮
𝑎%, 𝑥 ≤ 𝑏%



Linear Programming Standard Form
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𝑚𝑎𝑥 ⟨𝑐, 𝑥⟩
𝑠. 𝑡. , 𝐴𝑥 ≤ 𝑏

𝑥 ≥ 0



Transforming to Standard Form
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𝑚𝑖𝑛 𝑦" − 2𝑦!
𝑠. 𝑡. , 𝑦" + 2𝑦! = 3

𝑦" − 𝑦! ≥ 1
𝑦", 𝑦! ≥ 0

𝑚𝑎𝑥 −𝑦" + 2𝑦!

𝑠. 𝑡. ,
𝑦" + 2𝑦! ≤ 3

− 𝑦" + 2𝑦! ≤ −3	
− 𝑦" − 𝑦! ≤ −1

𝑦", 𝑦! 	≥ 0

Replace 𝑦" 
with 𝑧" − 𝑧"&

𝑚𝑎𝑥 𝑧" − 𝑧"&

𝑠. 𝑡. , 𝑧" − 𝑧"& + 𝑦! ≤ 3
	

𝑧", 𝑧"& , 𝑦! ≥ 0

𝑚𝑎𝑥 𝑦"
𝑠. 𝑡. , 𝑦" + 𝑦! ≤ 3

𝑦! ≥ 0



Applications of Linear Programming

Generalizes: Ax=b, 2-person zero-sum games, shortest path, 
max-flow, matching, multicommodity flow, MST, min weighted 
arborescence, …

Why significant?
• We can solve linear programming in polynomial time.
• Useful for approximation algorithms
• We can model many practical problems with a linear model 

and solve it with linear programming

Linear Programming in Practice:
• There are very fast implementations: IBM CPLEX, Gorubi in 

Python, CVX in Matlab, ….
• CPLEX can solve LPs with millions of variables/constraints in 

minutes
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Example 1: Diet Problem

Suppose you want to schedule a diet for yourself. There are four 
category of food: veggies, meat, fruits, and dairy. Each category has its 
own (p)rice, (c)alory and (h)appiness per pound:

Linear Modeling: Consider a linear model: If we eat 0.5lb of meat, 0.2lb 
of fruits we will be 0.5	ℎ% + 0.2	ℎ' happy
• You should eat 1500 calories to be healthy
• You can spend 20 dollars a day on food.
Goal: Maximize happiness?
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veggies meat fruits dairy
price 𝑝! 𝑝" 𝑝# 𝑝$
calorie 𝑐! 𝑐" 𝑐# 𝑐$
happiness ℎ! ℎ" ℎ# ℎ$



Diet Problem by LP

• You should eat 1500 calories to be healthy
• You can spend 20 dollars a day on food.
Goal: Maximize happiness?
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veggies meat fruits dairy
price 𝑝! 𝑝" 𝑝# 𝑝$
calorie 𝑐! 𝑐" 𝑐# 𝑐$
happiness ℎ! ℎ" ℎ# ℎ$

max 	 𝑥%ℎ% + 𝑥&ℎ& + 𝑥'ℎ' + 𝑥!ℎ!
𝑠. 𝑡. 	 𝑥%𝑝% + 𝑥&𝑝& + 𝑥'𝑝' + 𝑥!𝑝! ≤ 20
	 𝑥%𝑐% + 𝑥&𝑐& + 𝑥'𝑐' + 𝑥!𝑐! ≤ 1500
	 𝑥% , 𝑥&, 𝑥' , 𝑥! ≥ 0

#pounds of veggies, meat, fruits, dairy to eat per day



Components of a Linear Program

• Set of variables

• Bounding constraints on variables, 
• Are they nonnegative?

• Objective function

• Is it a minimization or a maximization problem

• LP Constraints, make sure they are linear
• Is it an equality or an inequality?
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Example 2: Max Flow

Define the set of variables
• For every edge 𝑒 let 𝑥( be the flow on the edge 𝑒

Put bounding constraints on your variables
• 𝑥( ≥ 0 for all edge e (The flow is nonnegative)

Write down the constraints
• 𝑥( ≤ 𝑐(𝑒)  for every edge e, (Capacity constraints)
• ∑(	*+,	*-	. 𝑥( = ∑(	/0	,*	. 𝑥(  ∀𝑣 ≠ 𝑠, 𝑡 (Conservation constraints)

Write down the objective function
• ∑(	*+,	*-	1 𝑥(
Decide if it is a minimize/maximization problem
• max
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Example 2: Max Flow

Q: Do we get exactly the same properties as Ford Fulkerson?
A: Not necessarily, the max-flow may not be integral
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max 	 B
(	*+,	*-	.

𝑥(

𝑠. 𝑡. 	 B
(	/01	/'	%

𝑥( =B
(	23	1/	%

𝑥( 	 ∀𝑣 ≠ 𝑠, 𝑡

	 𝑥( ≤ 𝑐 𝑒 	 ∀𝑒	
𝑥( ≥ 0	 ∀𝑒



Example 3: Min Cost Max Flow

Suppose we can route 100 gallons of water from 𝑠 to 𝑡.
But for every pipe edge 𝑒 we have to pay 𝑝 𝑒
 for each gallon of water that we send through 𝑒.

Goal: Send 100 gallons of water from 𝑠 to 𝑡 with minimum 
possible cost
 

20

min 	 L
(∈3

𝑝 𝑒 ⋅ 𝑥(

𝑠. 𝑡. 	 L
(	*+,	*-	.

𝑥( =L
(	45	67	.

𝑥( 	 ∀𝑣 ≠ 𝑠, 𝑡

	 L
(	*+,	*-	1

𝑥( = 100

	 𝑥( ≤ 𝑐 𝑒 	 ∀𝑒	
𝑥( ≥ 0	 ∀𝑒



Linear Programming 
and Approximation Algorithms
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Integer Program for Vertex Cover

Given a graph G=(V,E) with costs 𝑐' on the vertices. Find a 
vertex cover of G with minimum cost, i.e., min∑'∈) 𝑐'

Write LP with Integrality Constraint:
• Variables: One variable 𝑥' for each vertex v
• Bound: 𝑥' ∈ {0,1}
• Edge cover Constraints: 𝑥* + 𝑥' ≥ 1 for every edge 

𝑢, 𝑣 ∈ 𝐸
• Obj: min∑' 𝑐'𝑥' 
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IP for Vertex Cover
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𝑚𝑖𝑛 I
'

𝑐'𝑥'

𝑠. 𝑡. , 𝑥' + 𝑥* ≥ 1 ∀ 𝑢, 𝑣 ∈ 𝐸
𝑥' ∈ {0,1} ∀𝑣 ∈ 𝑉

Fact: The optimum solution of the above program is 
min vertex cover.
Pf: 

• First, any vertex cover 𝑆, 𝑥' = M1	 if	 𝑣 ∈ 𝑆0	 o.w.  is feasible

• For any feasible solution 𝑥, the 𝑆 = {𝑣: 𝑥' = 1} is a 
vertex cover

IP is NP-complete general!
But there are fast algorithms in 

practice that often work



LP Relaxation Vertex Cover
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𝑚𝑖𝑛 I
'

𝑐'𝑥'

𝑠. 𝑡. , 𝑥' + 𝑥* ≥ 1 ∀ 𝑢, 𝑣 ∈ 𝐸
0 ≤ 𝑥' ≤ 1 ∀𝑣 ∈ 𝑉

Fact: OPT-LP	≤ Min Vertex Cover
Pf: Min vertex cover is a feasible solution of the LP

Q: Can we hope to get an integer solution?



Bad Optimum solutions
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𝑚𝑖𝑛 I
'

𝑐'𝑥'

𝑠. 𝑡. , 𝑥' + 𝑥* ≥ 1 ∀ 𝑢, 𝑣 ∈ 𝐸
0 ≤ 𝑥' ≤ 1 ∀𝑣 ∈ 𝑉

𝐾5 complete graph

A feasible solution:
Set 𝑥. = 0.5 for all 𝑣

in the complete graph

If 𝑐. = 1 for all v, then 
Min vertex cover=𝑛 − 1
But OPT LP=n/2.



Approximation Alg for Vertex Cover

Given a graph G=(V,E) with costs 𝑐' on the edges. Find a 
vertex cover of G with minimum cost, i.e., min∑'∈) 𝑐'

Thm: There is a 2-approximation Alg for weighted vertex 
cover.
ALG: Solve LP. Let 𝑆 = 𝑣: 𝑥' ≥ 0.5 . Output S.

Pf: First, for every edge (𝑢, 𝑣), 𝑥* + 𝑥' ≥ 1 So at least one 
is in S. So, S is a vertex cover. 
Second,
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I
'∈)

𝑐' ≤I
'∈)

𝑐' 2𝑥' ≤ 2OPTLP ≤2 Min Vertex Cov



Duality
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Intro to Duality
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max 𝑥# + 2𝑥$
s. t. , 𝑥# + 3𝑥$ ≤ 2

2𝑥# + 2𝑥$ ≤ 3
𝑥#, 𝑥$ ≥ 0

Optimum solution: 𝑥" = 5/4 and 𝑥! = 1/4  with value 𝑥" + 2𝑥! = 7/4
How can you prove an upper-bound on the optimum?

First attempt: Since 𝑥", 𝑥! ≥ 0
𝑥" + 2𝑥! ≤ 𝑥" + 3𝑥! ≤ 2 

Second attempt: 

𝑥" + 2𝑥! ≤
2
3
𝑥" + 3𝑥! +

1
3
2𝑥" + 2𝑥! ≤

2
3
2 +

1
3
3 =

7
3

Third attempt: 

𝑥" + 2𝑥! ≤
1
2 𝑥" + 3𝑥! +

1
4 2𝑥" + 2𝑥! ≤

1
2 (2) +

1
4 (3) =

7
4



Dual Certificate

Goal: Minimize 2𝑦" + 3𝑦#

But, we must make sure the sum of the LHS is at most 
objective, i.e.,

𝑥" + 2𝑥# ≤ 𝑦" 𝑥" + 3𝑥# + 𝑦# 2𝑥" + 2𝑥#
In other words,

1 ≤ 1 ⋅ 𝑦" + 2 ⋅ 𝑦#
2 ≤ 3 ⋅ 𝑦" + 2 ⋅ 𝑦#

Finally, 𝑦", 𝑦# ≥ 0 (else the direction of inequalities change)
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𝑚𝑎𝑥 𝑥# + 2𝑥$
𝑠. 𝑡. , 𝑥# + 3𝑥$ ≤ 2

2𝑥# + 2𝑥$ ≤ 3
𝑥#, 𝑥$ ≥ 0

𝑦"
𝑦!



Dual Program
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max 𝑥# + 2𝑥$
s. t. , 𝑥# + 3𝑥$ ≤ 2

2𝑥# + 2𝑥$ ≤ 3
𝑥#, 𝑥$ ≥ 0

min 2𝑦# + 3𝑦$
s. t. , 𝑦# + 2𝑦$ ≥ 1

3𝑦# + 2𝑦$ ≥ 2
𝑦#, 𝑦$ ≥ 0

OPT: 𝑥" = 5/4 and 𝑥! = 1/4
Value 7/4

OPT: 𝑦" = 1/2 and 𝑦! = 1/4
Value 7/4


