N

## **CSE 421**

## **Linear Programming**

Shayan Oveis Gharan

# **Linear Programming**

## System of Linear Equations

Find a solution to

$$x_3-x_1 = 4$$
  
 $x_3 - 2x_2 = 3$   
 $x_1 + 2x_2 + x_3 = 7$ 

Can be solved by Gaussian elimination method in  $O(n^3)$  when we have n variables/n constraints

## Linear Algebra Premier

Let a be a column vector in  $\mathbb{R}^d$  and x a column vector of d variables.

$$\langle a, x \rangle = a^T x = a_1 x_1 + a_2 x_2 + \dots + a_d x_d$$

Hyperplane: A hyperplane is the set of points x such that  $\langle a, x \rangle = b$  for some  $b \in \mathbb{R}$ 

Halfspace: A halfspace is the set of points on one side of a hyperplane.

$$\{x: \langle a, x \rangle \leq b\}$$
 or  $\{x: \langle a, x \rangle \geq b\}$ 





$$3x_2 + x_1 \le -3$$

$$x_1$$

$$x_1$$

$$x_2$$

$$x_1$$

$$x_2$$

$$x_3$$

$$x_4$$

$$x_4$$

$$x_4$$

## Find the smallest point in a polytope





## **Linear Programming**

Optimize a linear function subject to linear inequalities

max 
$$3x_1 - 4x_3$$
 is linear  $x_1 + x_2 \le 5$  in  $x_1 + x_2 \le 5$  in  $x_3 - x_1 = 4$  equalities  $x_3 - x_2 \ge -5$  in  $x_1, x_2, x_3 \ge 0$ 

- We can have equalities and inequalities,
- We can have a linear objective functions

## Linear Algebra Premier

Let a be a column vector in  $\mathbb{R}^d$  and x a column vector of d variables.

$$\langle a, x \rangle = a^T x = a_1 x_1 + a_2 x_2 + \dots + a_d x_d$$

$$A = \begin{bmatrix} a_1^T \\ a_2^T \\ \vdots \\ a_m^T \end{bmatrix} \qquad Ax = \begin{pmatrix} \langle a_1, x \rangle \\ \langle a_2, x \rangle \\ \vdots \\ \langle a_m, x \rangle \end{pmatrix}$$

$$\begin{aligned} \langle a_1, x \rangle &\leq b_1 \\ \langle a_2, x \rangle &\leq b_2 \\ \vdots \\ \langle a_m, x \rangle &\leq b_m \end{aligned}$$

# Linear Programming Standard Form



## Transforming to Standard Form

min 
$$y_1 - 2y_2$$
  
s.t.,  $y_1 + 2y_2 = 3$   
 $y_1 - y_2 \ge 1$   
 $y_1, y_2 \ge 0$ 



max 
$$-y_1 + 2y_2$$
  
 $y_1 + 2y_2 \le 3$   
s.t.,  $-(y_1 + 2y_2) \le -3$   
 $-(y_1 - y_2) \le -1$   
 $y_1, y_2 \ge 0$ 

$$max y_1$$

$$s.t., y_1 + y_2 \le 3$$

$$y_2 \ge 0$$

Replace 
$$y_1$$
 with  $z_1 - z_1'$ 

max 
$$z_1 - z'_1$$
  
s.t.,  $(z_1 - z'_1) + y_2 \le 3$ 

$$z_1, z_1', y_2 \ge 0$$

## Applications of Linear Programming

Generalizes: Ax=b, 2-person zero-sum games, shortest path, max-flow, matching, multicommodity flow, MST, min weighted arborescence, ...

#### Why significant?

- We can solve linear programming in polynomial time.
- Useful for approximation algorithms
- We can model many practical problems with a linear model and solve it with linear programming

#### Linear Programming in Practice:

- There are very fast implementations: IBM CPLEX, Gorubi in Python, CVX in Matlab, ....
- CPLEX can solve LPs with millions of variables/constraints in minutes

## **Example 1: Diet Problem**

Suppose you want to schedule a diet for yourself. There are four category of food: veggies, meat, fruits, and dairy. Each category has its own (p)rice, (c)alory and (h)appiness per pound:

|           | veggies | meat  | fruits | dairy |
|-----------|---------|-------|--------|-------|
| price     | $p_v$   | $p_m$ | $p_f$  | $p_d$ |
| calorie   | $c_v$   | $c_m$ | $c_f$  | $c_d$ |
| happiness | $h_v$   | $h_m$ | $h_f$  | $h_d$ |

Linear Modeling: Consider a linear model: If we eat 0.5lb of meat, 0.2lb of fruits we will be  $0.5 h_m + 0.2 h_f$  happy

- You should eat 1500 calories to be healthy
- You can spend 20 dollars a day on food.

Goal: Maximize happiness?

## Diet Problem by LP

- You should eat 1500 calories to be healthy
- You can spend 20 dollars a day on food.

Goal: Maximize happiness?

|           | veggies | meat  | fruits | dairy |
|-----------|---------|-------|--------|-------|
| price     | $p_v$   | $p_m$ | $p_f$  | $p_d$ |
| calorie   | $c_v$   | $c_m$ | $c_f$  | $c_d$ |
| happiness | $h_v$   | $h_m$ | $h_f$  | $h_d$ |

$$\max x_{v}h_{v} + x_{m}h_{m} + x_{f}h_{f} + x_{d}h_{d}$$
s.t. 
$$x_{v}p_{v} + x_{m}p_{m} + x_{f}p_{f} + x_{d}p_{d} \le 20$$

$$x_{v}c_{v} + x_{m}c_{m} + x_{f}c_{f} + x_{d}c_{d} \le 1500$$

$$x_{v}, x_{m}, x_{f}, x_{d} \ge 0$$

## Components of a Linear Program

- Set of variables
- Bounding constraints on variables,
  - Are they nonnegative?
- Objective function
- Is it a minimization or a maximization problem
- LP Constraints, make sure they are linear
  - Is it an equality or an inequality?

## Example 2: Max Flow

#### Define the set of variables

• For every edge e let  $x_e$  be the flow on the edge e

#### Put bounding constraints on your variables

•  $x_e \ge 0$  for all edge e (The flow is nonnegative)

#### Write down the constraints

- $x_e \le c(e)$  for every edge e, (Capacity constraints)
- $\sum_{e \text{ out of } v} x_e = \sum_{e \text{ in to } v} x_e \quad \forall v \neq s, t \text{ (Conservation constraints)}$

#### Write down the objective function

•  $\sum_{e \text{ out of } s} x_e$ 

#### Decide if it is a minimize/maximization problem

max

## Example 2: Max Flow

$$\max \sum_{\substack{e \text{ out of } s \\ s.t.}} x_e$$

$$\sum_{\substack{e \text{ out of } v \\ e \text{ out of } v}} x_e = \sum_{\substack{e \text{ in to } v \\ e \text{ in to } v}} x_e \quad \forall v \neq s, t$$

$$x_e \leq c(e) \qquad \forall e$$

$$x_e \geq 0 \qquad \forall e$$

Q: Do we get exactly the same properties as Ford Fulkerson?

A: Not necessarily, the max-flow may not be integral

## **Example 3: Min Cost Max Flow**

Suppose we can route 100 gallons of water from s to t. But for every pipe edge e we have to pay p(e) for each gallon of water that we send through e.

Goal: Send 100 gallons of water from s to t with minimum possible cost

$$\min \sum_{e \in E} p(e) \cdot x_e$$

$$s.t. \sum_{e \text{ out of } v} x_e = \sum_{e \text{ in to } v} x_e \quad \forall v \neq s, t$$

$$\sum_{e \text{ out of } s} x_e = 100$$

$$x_e \leq c(e) \quad \forall e$$

$$x_e \geq 0 \quad \forall e$$

# Linear Programming and Approximation Algorithms

## Integer Program for Vertex Cover

Given a graph G=(V,E) with costs  $c_v$  on the vertices. Find a vertex cover of G with minimum cost, i.e.,  $\min \sum_{v \in S} c_v$ 

#### Write LP with Integrality Constraint:

- Variables: One variable  $x_n$  for each vertex v
- Bound:  $x_v \in \{0,1\}$
- Edge cover Constraints:  $x_u + x_v \ge 1$  for every edge  $(u, v) \in E$
- Obj:  $\min \sum_{v} c_v x_v$

## IP for Vertex Cover

$$min \qquad \sum_{v} c_{v} x_{v}$$

$$s.t., \quad x_{v} + x_{u} \ge 1 \quad \forall (u, v) \in E$$

$$x_{v} \in \{0,1\} \qquad \forall v \in V$$

IP is NP-complete general!
But there are fast algorithms in practice that often work

min vertex cover.

Pf:

Fact:

- First, any vertex cover S,  $x_v = \begin{cases} 1 & \text{if } v \in S \\ 0 & \text{o.w.} \end{cases}$  is feasible
- For any feasible solution x, the  $S = \{v: x_v = 1\}$  is a vertex cover

## LP Relaxation Vertex Cover

Fact: OPT-LP ≤ Min Vertex Cover

Pf: Min vertex cover is a feasible solution of the LP

Q: Can we hope to get an integer solution?

## **Bad Optimum solutions**

$$min \qquad \sum_{v} c_{v} x_{v}$$

$$s.t., \quad x_{v} + x_{u} \ge 1 \quad \forall (u,v) \in E$$

$$0 \le x_{v} \le 1 \quad \forall v \in V$$







A feasible solution: Set  $x_v = 0.5$  for all v in the complete graph

If  $c_v = 1$  for all v, then Min vertex cover=n - 1But OPT LP=n/2.

## Approximation Alg for Vertex Cover

Given a graph G=(V,E) with costs  $c_v$  on the edges. Find a vertex cover of G with minimum cost, i.e.,  $\min \sum_{v \in S} c_v$ 

Thm: There is a 2-approximation Alg for weighted vertex cover.

ALG: Solve LP. Let  $S = \{v: x_v \ge 0.5\}$ . Output S.

Pf: First, for every edge (u, v),  $x_u + x_v \ge 1$  So at least one is in S. So, S is a vertex cover.

Second,

$$\sum_{v \in S} c_v \le \sum_{v \in S} c_v(2x_v) \le 20 \text{PTLP} \le 2 \text{ Min Vertex Cov}$$

# **Duality**

## Intro to Duality

max 
$$x_1 + 2x_2$$
  
s.t.,  $x_1 + 3x_2 \le 2$   
 $2x_1 + 2x_2 \le 3$   
 $x_1, x_2 \ge 0$ 

Optimum solution:  $x_1 = 5/4$  and  $x_2 = 1/4$  with value  $x_1 + 2x_2 = 7/4$  How can you prove an upper-bound on the optimum?

First attempt: Since 
$$x_1, x_2 \ge 0$$
  
 $x_1 + 2x_2 \le x_1 + 3x_2 \le 2$ 

#### Second attempt:

$$x_1 + 2x_2 \le \frac{2}{3}(x_1 + 3x_2) + \frac{1}{3}(2x_1 + 2x_2) \le \frac{2}{3}(2) + \frac{1}{3}(3) = \frac{7}{3}$$

#### Third attempt.

$$x_1 + 2x_2 \le \frac{1}{2}(x_1 + 3x_2) + \frac{1}{4}(2x_1 + 2x_2) \le \frac{1}{2}(2) + \frac{1}{4}(3) = \frac{7}{4}$$
 28

## **Dual Certificate**

$$max$$
  $x_1 + 2x_2$   
 $s.t., x_1 + 3x_2 \le 2$   $y_1$   
 $2x_1 + 2x_2 \le 3$   $y_2$   
 $x_1, x_2 \ge 0$ 

Goal: Minimize  $2y_1 + 3y_2$ 

But, we must make sure the sum of the LHS is at most objective, i.e.,

$$x_1 + 2x_2 \le y_1(x_1 + 3x_2) + y_2(2x_1 + 2x_2)$$

In other words,

$$1 \le 1 \cdot y_1 + 2 \cdot y_2 \\ 2 \le 3 \cdot y_1 + 2 \cdot y_2$$

Finally,  $y_1, y_2 \ge 0$  (else the direction of inequalities change)

## **Dual Program**

max 
$$x_1 + 2x_2$$
  
s.t.,  $x_1 + 3x_2 \le 2$   
 $2x_1 + 2x_2 \le 3$   
 $x_1, x_2 \ge 0$ 

OPT: 
$$x_1 = 5/4$$
 and  $x_2 = 1/4$  Value 7/4

min 
$$2y_1 + 3y_2$$
  
s.t.,  $y_1 + 2y_2 \ge 1$   
 $3y_1 + 2y_2 \ge 2$   
 $y_1, y_2 \ge 0$ 

OPT: 
$$y_1 = 1/2$$
 and  $y_2 = 1/4$  Value 7/4