CSE 421

Linear Programming

Shayan Oveis Gharan

Linear Programming

System of Linear Equations

Find a solution to

$$
\begin{aligned}
& x_{3}-x_{1}=4 \\
& x_{3}-2 x_{2}=3 \\
& x_{1}+2 x_{2}+x_{3}=7
\end{aligned}
$$

Can be solved by Gaussian elimination method in $O\left(n^{3}\right)$ when we have n variables/n constraints

Linear Algebra Premier

Let a be a column vector in \mathbb{R}^{d} and x a column vector of d variables.

$$
\langle a, x\rangle=a^{T} x=a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{d} x_{d}
$$

Hyperplane: A hyperplane is the set of points x such that $\langle a, x\rangle=$ b for some $b \in \mathbb{R}$

Halfspace: A halfspace is the set of points on one side of a hyperplane.

$$
\{x:\langle a, x\rangle \leq b\} \quad \text { or } \quad\{x:\langle a, x\rangle \geq b\}
$$

$3 x_{2}+x_{1} \leq-3$

Find the smallest point in a polytope

Linear Programming

Optimize a linear function subject to linear inequalities

$$
\begin{array}{r}
\text { obj } \quad \begin{array}{r}
\min \\
\max \frac{\sqrt{3 x_{1}-4 x_{3}}}{} \text { is lineer } \\
\text { s.t., } x\rangle \\
x_{1}+x_{2} \leq 5
\end{array} \\
\frac{x_{3}-x_{1}=4}{} \rightarrow \text { equalities } \\
\frac{x_{3}-x_{2} \geq-5}{x_{1}, x_{2}, x_{3} \geq 0} \rightarrow \text { inen } \\
\underbrace{}_{\text {non }-n y} \text { const }
\end{array}
$$

- We can have equalities and inequalities,
- We can have a linear objective functions

Linear Algebra Premier

Let a be a column vector in \mathbb{R}^{d} and x a column vector of d variables.

$$
\begin{gathered}
\langle a, x\rangle=a^{T} x=a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{d} x_{d} \\
A=\left[\begin{array}{c}
a_{1}^{T} \\
a_{2}^{T} \\
\vdots \\
a_{m}^{T}
\end{array}\right] \\
A x \leq b
\end{gathered}
$$

Linear Programming Standard Form

$$
\begin{array}{ll}
\stackrel{\downarrow}{\max } & \langle c, x\rangle \\
\text { s.t., } & A x \leq b \\
& x \geq 0
\end{array}
$$

you can turn any $L P$ into standard form.

Transforming to Standard Form

$$
\begin{array}{lc}
\min & y_{1}-2 y_{2} \\
\text { s.t., } & y_{1}+2 y_{2}=3 \\
& y_{1}-y_{2} \geq 1 \\
& y_{1}, y_{2} \geq 0
\end{array}
$$

$$
\begin{array}{cc}
\max & -y_{1}+2 y_{2} \\
\text { s.t., } & y_{1}+2 y_{2} \leq 3 \\
& -\left(y_{1}+2 y_{2}\right) \leq-3 \\
& -\left(y_{1}-y_{2}\right) \leq-1 \\
& y_{1}, y_{2} \geq 0
\end{array}
$$

max	y_{1}
s.t.,	$y_{1}+y_{2} \leq 3$
	$y_{2} \geq 0$

Replace y_{1} with $z_{1}-z_{1}^{\prime}$
$\begin{array}{lc}\text { max } & z_{1}-z_{1}^{\prime} \\ \text { s.t., } & \left(z_{1}-z_{1}^{\prime}\right)+y_{2} \leq 3\end{array}$
$z_{1}, z_{1}^{\prime}, y_{2} \geq 0$

Applications of Linear Programming

Generalizes: $A x=b, 2-p e r s o n ~ z e r o-s u m ~ g a m e s, ~ s h o r t e s t ~ p a t h, ~$ max-flow, matching, multicommodity flow, MST, min weighted arborescence, ...

Why significant?

- We can solve linear programming in polynomial time.
- Useful for approximation algorithms
- We can model many practical problems with a linear model and solve it with linear programming

Linear Programming in Practice:

- There are very fast implementations: IBM CPLEX, Gorubi in Python, CVX in Matlab,
- CPLEX can solve LPs with millions of variables/constraints in minutes

Example 1: Diet Problem

Suppose you want to schedule a diet for yourself. There are four category of food: veggies, meat, fruits, and dairy. Each category has its own (p)rice, (c)alory and (h)appiness per pound:

	veggies	meat	fruits	dairy
price	p_{v}	p_{m}	p_{f}	p_{d}
calorie	c_{v}	c_{m}	c_{f}	c_{d}
happiness	h_{v}	h_{m}	h_{f}	h_{d}

Linear Modeling: Consider a linear model: If we eat 0.5 lb of meat, 0.2 lb of fruits we will be $0.5 h_{m}+0.2 h_{f}$ happy

- You should eat 1500 calories to be healthy
- You can spend 20 dollars a day on food.

Goal: Maximize happiness?

Diet Problem by LP

- You should eat 1500 calories to be healthy
- You can spend 20 dollars a day on food.

Goal: Maximize happiness?

	veggies	meat	fruits	dairy
price	p_{v}	p_{m}	p_{f}	p_{d}
calorie	c_{v}	c_{m}	c_{f}	c_{d}
happiness	h_{v}	h_{m}	h_{f}	h_{d}

$$
\begin{array}{ll}
\max & x_{v} h_{v}+x_{m} h_{m}+x_{f} h_{f}+x_{d} h_{d} \\
\text { s.t. } & x_{v} p_{v}+x_{m} p_{m}+x_{f} p_{f}+x_{d} p_{d} \leq 20 \\
& x_{v} c_{v}+x_{m} c_{m}+x_{f} c_{f}+x_{d} c_{d} \leq 1500 \\
& x_{v}, x_{m}, x_{f}, x_{d} \geq 0
\end{array}
$$

Components of a Linear Program

- Set of variables
- Bounding constraints on variables,
- Are they nonnegative?
- Objective function
- Is it a minimization or a maximization problem
- LP Constraints, make sure they are linear
- Is it an equality or an inequality?

Example 2: Max Flow

Define the set of variables

- For every edge e let x_{e} be the flow on the edge e

Put bounding constraints on your variables

- $x_{e} \geq 0$ for all edge e (The flow is nonnegative)

Write down the constraints

- $x_{e} \leq c(e)$ for every edge e, (Capacity constraints)
- $\sum_{e \text { out of } v} x_{e}=\sum_{e \text { in to } v} x_{e} \forall v \neq s, t$ (Conservation constraints)

Write down the objective function

- $\sum_{e \text { out of } s} x_{e}$

Decide if it is a minimize/maximization problem

- max

Example 2: Max Flow

$$
\begin{array}{lll}
\max & \sum_{e \text { out of } s} x_{e} \\
\text { s.t. } & \sum_{e \text { out of } v} x_{e}=\sum_{e \text { into } v} x_{e} & \forall v \neq s, t \\
& x_{e} \leq c(e) & \forall e \\
& x_{e} \geq 0 & \forall e
\end{array}
$$

Q: Do we get exactly the same properties as Ford Fulkerson?
A: Not necessarily, the max-flow may not be integral

Example 3: Min Cost Max Flow

Suppose we can route 100 gallons of water from s to t.
But for every pipe edge e we have to pay $p(e)$ for each gallon of water that we send through e.

Goal: Send 100 gallons of water from s to t with minimum possible cost

$$
\begin{array}{lll}
\min & \sum_{e \in \mathrm{E}} p(e) \cdot x_{e} & \\
\text { s.t. } & \sum_{e \text { out of } v} x_{e}=\sum_{e \text { in to } v} x_{e} & \forall v \neq s, t \\
& \sum_{e \text { out of } s} x_{e}=100 & \\
& x_{e} \leq c(e) & \forall e \\
& x_{e} \geq 0 & \forall e
\end{array}
$$

Linear Programming and Approximation Algorithms

Integer Program for Vertex Cover

Given a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ with costs c_{v} on the vertices. Find a vertex cover of G with minimum cost, i.e., $\min \sum_{v \in S} c_{v}$

Write LP with Integrality Constraint:

- Variables: One variable x_{v} for each vertex v
- Bound: $x_{v} \in\{0,1\}$
- Edge cover Constraints: $x_{u}+x_{v} \geq 1$ for every edge $(u, v) \in E$
- Obj: $\min \sum_{v} c_{v} x_{v}$

IP for Vertex Cover

$$
\begin{array}{ccc}
\min & \sum_{v} c_{v} x_{v} & \\
\text { s.t., } & x_{v}+x_{u} \geq 1 \quad \forall(u, v) \in E \\
& x_{v} \in\{0,1\} \quad \forall v \in V \\
\text { IP is NP-complete general! } \\
\text { But there are fast algorithms in } \\
\text { practice that often work }
\end{array}
$$

Fact: min vertex cover.
Pf:

- First, any vertex cover $S, x_{v}=\left\{\begin{array}{ll}1 & \text { if } v \in S \\ 0 & 0 . \mathrm{w} .\end{array}\right.$ is feasible
- For any feasible solution x, the $S=\left\{v: x_{v}=1\right\}$ is a vertex cover

LP Relaxation Vertex Cover

$$
\begin{array}{lcc}
\min & \sum_{v} c_{v} x_{v} & \\
& \\
\text { s.t., } & x_{v}+x_{u} \geq 1 & \forall(u, v) \in E \\
& 0 \leq x_{v} \leq 1 & \forall v \in V
\end{array}
$$

Fact: OPT-LP \leq Min Vertex Cover
Pf: Min vertex cover is a feasible solution of the LP

Q: Can we hope to get an integer solution?

Bad Optimum solutions

$$
\begin{array}{lcc}
\min & \sum_{v} c_{v} x_{v} & \\
& \\
\text { s.t., } & x_{v}+x_{u} \geq 1 & \forall(u, v) \in E \\
& 0 \leq x_{v} \leq 1 & \forall v \in V
\end{array}
$$

K_{n} complete graph

A feasible solution: Set $x_{v}=0.5$ for all v in the complete graph

If $c_{v}=1$ for all v , then Min vertex cover= $n-1$ But OPT LP=n/2.

Approximation Alg for Vertex Cover

Given a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ with costs c_{v} on the edges. Find a vertex cover of G with minimum cost, i.e., $\min \sum_{v \in S} c_{v}$

Thm: There is a 2-approximation Alg for weighted vertex cover.
ALG: Solve LP. Let $S=\left\{v: x_{v} \geq 0.5\right\}$. Output S.

Pf: First, for every edge (u, v), $x_{u}+x_{v} \geq 1$ So at least one is in S . So, S is a vertex cover.
Second,

$$
\sum_{v \in S} c_{v} \leq \sum_{v \in S} c_{v}\left(2 x_{v}\right) \leq 20 \text { PTLP } \leq 2 \text { Min Vertex Cov }
$$

Duality

Intro to Duality

$$
\begin{array}{cc}
\max & x_{1}+2 x_{2} \\
\text { s.t., } & x_{1}+3 x_{2} \leq 2 \\
& 2 x_{1}+2 x_{2} \leq 3 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

Optimum solution: $x_{1}=5 / 4$ and $x_{2}=1 / 4$ with value $x_{1}+2 x_{2}=7 / 4$ How can you prove an upper-bound on the optimum?

First attempt: Since $x_{1}, x_{2} \geq 0$

$$
x_{1}+2 x_{2} \leq x_{1}+3 x_{2} \leq 2
$$

Second attempt:

$$
x_{1}+2 x_{2} \leq \frac{2}{3}\left(x_{1}+3 x_{2}\right)+\frac{1}{3}\left(2 x_{1}+2 x_{2}\right) \leq \frac{2}{3}(2)+\frac{1}{3}(3)=\frac{7}{3}
$$

Third attempt:

$$
x_{1}+2 x_{2} \leq \frac{1}{2}\left(x_{1}+3 x_{2}\right)+\frac{1}{4}\left(2 x_{1}+2 x_{2}\right) \leq \frac{1}{2}(2)+\frac{1}{4}(3)=\frac{7}{4}
$$

Dual Certificate

$$
\begin{array}{lcc}
\max & x_{1}+2 x_{2} & \\
\text { s.t., } & x_{1}+3 x_{2} \leq 2 & y_{1} \\
& 2 x_{1}+2 x_{2} \leq 3 & y_{2} \\
& x_{1}, x_{2} \geq 0 &
\end{array}
$$

Goal: Minimize $2 y_{1}+3 y_{2}$
But, we must make sure the sum of the LHS is at most objective, i.e.,

$$
x_{1}+2 x_{2} \leq y_{1}\left(x_{1}+3 x_{2}\right)+y_{2}\left(2 x_{1}+2 x_{2}\right)
$$

In other words,

$$
\begin{aligned}
& 1 \leq 1 \cdot y_{1}+2 \cdot y_{2} \\
& 2 \leq 3 \cdot y_{1}+2 \cdot y_{2}
\end{aligned}
$$

Finally, $y_{1}, y_{2} \geq 0$ (else the direction of inequalities change)

Dual Program

$$
\begin{array}{cc}
\max & x_{1}+2 x_{2} \\
\text { s.t., } & x_{1}+3 x_{2} \leq 2 \\
& 2 x_{1}+2 x_{2} \leq 3 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

OPT: $x_{1}=5 / 4$ and $x_{2}=1 / 4$ Value 7/4
$\min \quad 2 y_{1}+3 y_{2}$
s.t., $\quad y_{1}+2 y_{2} \geq 1$
$3 y_{1}+2 y_{2} \geq 2$
$y_{1}, y_{2} \geq 0$
OPT: $y_{1}=1 / 2$ and $y_{2}=1 / 4$
Value $7 / 4$

