Network Connectivity
Network Connectivity

Given a digraph $G = (V, E)$ and two nodes s and t, find min number of edges whose removal disconnects t from s.

Def. A set of edges $F \subseteq E$ disconnects t from s if all s-t paths uses at least one edge in F.

Ex: In testing network reliability
Thm. [Menger 1927] The max number of edge-disjoint s-t paths is equal to the min number of edges whose removal disconnects t from s.

Pf.

i) We showed that max number edge disjoint s-t paths = max flow.

ii) Max-flow Min-cut theorem => min s-t cut = max-flow

iii) For a s-t cut (A,B), cap(A,B) is equal to the number of edges out of A. In other words, every s-t cut (A,B) corresponds to cap(A,B) edges whose removal disconnects s from t.

So, max number of edge disjoint s-t paths = min number of edges to disconnect s from t.
Label each pixel as foreground/background.

- V = set of pixels, E = pairs of neighboring pixels.
- $a_i \geq 0$ is likelihood pixel i in foreground.
- $b_i \geq 0$ is likelihood pixel i in background.
- $p_{i,j} \geq 0$ is separation penalty for labeling one of i and j as foreground, and the other as background.

Goals.

Accuracy: if $a_i > b_i$ in isolation, prefer to label i in foreground.

Smoothness: if many neighbors of i are labeled foreground, we should be inclined to label i as foreground.

Find partition (A, B) that maximizes:

$$\sum_{i \in A} a_i + \sum_{j \in B} b_j - \sum_{(i,j) \in E} p_{i,j}$$
Difficulties:
• Maximization (as opposed to minimization)
• No source or sink
• Undirected graph

Step 1: Turn into Minimization

Maximizing
\[\sum_{i \in A} a_i + \sum_{j \in B} b_j - \sum_{(i,j) \in E} p_{i,j} \]

Equivalent to minimizing
\[+ \sum_{i \in V} a_i + \sum_{j \in V} b_j - \sum_{i \in A} a_i - \sum_{j \in B} b_j + \sum_{(i,j) \in E} p_{i,j} \]

Equivalent to minimizing
\[+ \sum_{j \in B} a_j + \sum_{i \in A} b_i + \sum_{(i,j) \in E} p_{i,j} \]
Min cut Formulation (cont’d)

G' = (V', E').
Add s to correspond to foreground;
Add t to correspond to background
Use two anti-parallel edges instead of undirected edge.
Consider min cut \((A, B)\) in \(G'\). \((A = \text{foreground.})\)

\[
cap(A, B) = \sum_{j \in B} a_j + \sum_{i \in A} b_i + \sum_{(i,j) \in E, i \in A, j \in B} p_{i,j}
\]

Precisely the quantity we want to minimize.
Linear Programming
System of Linear Equations

Find a solution to

$$x_3 - x_1 = 4$$
$$x_3 - 2x_2 = 3$$
$$x_1 + 2x_2 + x_3 = 7$$

Can be solved by Gaussian elimination method in $O(n^3)$ when we have n variables/n constraints
Let a be a column vector in \mathbb{R}^d and x a column vector of d variables.

$$\langle a, x \rangle = a^T x = a_1 x_1 + a_2 x_2 + \cdots + a_d x_d$$

Hyperplane: A hyperplane is the set of points x such that $\langle a, x \rangle = b$ for some $b \in \mathbb{R}$

Halfspace: A halfspace is the set of points on one side of a hyperplane.

$$\{x : \langle a, x \rangle \leq b\} \text{ or } \{x : \langle a, x \rangle \geq b\}$$
\[3x_2 + x_1 = 0 \]

\[a = \left(\frac{1}{3} \right) \]
$3x_2 + x_1 \leq 0$

$a = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$
\[3x_2 + x_1 \leq -3\]

\[a = \left(\frac{1}{3}\right)\]
Find the smallest point in a polytope
\begin{align*}
\min & \quad x_2 \\
\text{s. t.,} & \quad \langle a_1, x \rangle \leq b_1 \\
& \quad \langle a_2, x \rangle \geq b_2 \\
& \quad \langle a_3, x \rangle \geq b_3 \\
& \quad \ldots
\end{align*}
Optimize a linear function subject to linear inequalities

\[
\begin{align*}
\text{max} & \quad 3x_1 - 4x_3 \\
\text{s.t.,} & \quad x_1 + x_2 \leq 5 \\
& \quad x_3 - x_1 = 4 \\
& \quad x_3 - x_2 \geq -5 \\
& \quad x_1, x_2, x_3 \geq 0
\end{align*}
\]

• We can have equalities and inequalities,
• We can have a linear objective functions
Let \(a \) be a column vector in \(\mathbb{R}^d \) and \(x \) a column vector of \(d \) variables.

\[
\langle a, x \rangle = a^T x = a_1 x_1 + a_2 x_2 + \cdots + a_d x_d
\]

\[
A = \begin{bmatrix}
 a_1^T \\
 a_2^T \\
 \vdots \\
 a_m^T
\end{bmatrix}
\]

\[
Ax = \begin{pmatrix}
 \langle a_1, x \rangle \\
 \langle a_2, x \rangle \\
 \vdots \\
 \langle a_m, x \rangle
\end{pmatrix}
\]

\[
Ax \leq b
\]

\[
\langle a_1, x \rangle \leq b_1 \\
\langle a_2, x \rangle \leq b_2 \\
\vdots \\
\langle a_m, x \rangle \leq b_m
\]
Linear Programming Standard Form

\[\begin{align*}
\text{max} & \quad \langle c, x \rangle \\
\text{s.t.,} & \quad Ax \leq b \\
x & \geq 0
\end{align*} \]

Any linear program can be translated into the standard form.

\[\begin{align*}
\text{min} & \quad y_1 - 2y_2 \\
\text{s.t.,} & \quad y_1 + 2y_2 = 3 \\
& \quad y_1 - y_2 \geq 1 \\
& \quad y_1 \geq 0
\end{align*} \]

Replace \(y_2 \) with \(z_2 - z'_2 \)

\[\begin{align*}
\text{max} & \quad -y_1 + 2(z_2 - z'_2) \\
\text{s.t.,} & \quad y_1 + 2(z_2 - z'_2) \leq 3 \\
& \quad -(y_1 + 2(z_2 - z'_2)) \leq -3 \\
& \quad -(y_1 - (z_2 - z'_2)) \leq -1 \\
& \quad y_1, z_2, z'_2 \geq 0
\end{align*} \]
Applications of Linear Programming

Generalizes: $Ax=b$, 2-person zero-sum games, shortest path, max-flow, matching, multicommodity flow, MST, min weighted arborescence, ...

Why significant?
• We can solve linear programming in polynomial time.
• Useful for approximation algorithms
• We can model many practical problems with a linear model and solve it with linear programming

Linear Programming in Practice:
• There are very fast implementations: IBM CPLEX, Gorubi in Python, CVX in Matlab,
• CPLEX can solve LPs with millions of variables/constraints in minutes
Example 1: Diet Problem

Suppose you want to schedule a diet for yourself. There are four categories of food: veggies, meat, fruits, and dairy. Each category has its own (p)rice, (c)alory and (h)appiness per pound:

<table>
<thead>
<tr>
<th></th>
<th>veggies</th>
<th>meat</th>
<th>fruits</th>
<th>dairy</th>
</tr>
</thead>
<tbody>
<tr>
<td>price</td>
<td>(p_v)</td>
<td>(p_m)</td>
<td>(p_f)</td>
<td>(p_d)</td>
</tr>
<tr>
<td>calorie</td>
<td>(c_v)</td>
<td>(c_m)</td>
<td>(c_f)</td>
<td>(c_d)</td>
</tr>
<tr>
<td>happiness</td>
<td>(h_v)</td>
<td>(h_m)</td>
<td>(h_f)</td>
<td>(h_d)</td>
</tr>
</tbody>
</table>

Linear Modeling: Consider a linear model: If we eat 0.5lb of meat, 0.2lb of fruits we will be \(0.5 \cdot h_m + 0.2 \cdot h_f\) happy

- You should eat 1500 calories to be healthy
- You can spend 20 dollars a day on food.

Goal: Maximize happiness?
Diet Problem by LP

- You should eat 1500 calories to be healthy
- You can spend 20 dollars a day on food.

Goal: Maximize happiness?

<table>
<thead>
<tr>
<th></th>
<th>veggies</th>
<th>meat</th>
<th>fruits</th>
<th>dairy</th>
</tr>
</thead>
<tbody>
<tr>
<td>price</td>
<td>p_v</td>
<td>p_m</td>
<td>p_f</td>
<td>p_d</td>
</tr>
<tr>
<td>calorie</td>
<td>c_v</td>
<td>c_m</td>
<td>c_f</td>
<td>c_d</td>
</tr>
<tr>
<td>happiness</td>
<td>h_v</td>
<td>h_m</td>
<td>h_f</td>
<td>h_d</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\text{max} & \quad x_v h_v + x_m h_m + x_f h_f + x_d h_d \\
\text{s.t.} & \quad x_v p_v + x_m p_m + x_f p_f + x_d p_d \leq 20 \\
& \quad x_v c_v + x_m c_m + x_f c_f + x_d c_d \leq 1500 \\
& \quad x_v, x_m, x_f, x_d \geq 0
\end{align*}
\]

#pounds of veggies, meat, fruits, dairy to eat per day
Components of a Linear Program

- Set of variables
- Bounding constraints on variables,
 - Are they nonnegative?
- Objective function
- Is it a minimization or a maximization problem
- LP Constraints, make sure they are linear
 - Is it an equality or an inequality?
Example 2: Max Flow

Define the set of variables
• For every edge e let x_e be the flow on the edge e

Put bounding constraints on your variables
• $x_e \geq 0$ for all edge e (The flow is nonnegative)

Write down the constraints
• $x_e \leq c(e)$ for every edge e, (Capacity constraints)
• $\sum_{e \text{ out of } v} x_e = \sum_{e \text{ in to } v} x_e \quad \forall v \neq s, t$ (Conservation constraints)

Write down the objective function
• $\sum_{e \text{ out of } s} x_e$

Decide if it is a minimize/maximization problem
• max
Example 2: Max Flow

\[
\begin{align*}
\text{max} & \quad \sum_{e \text{ out of } s} x_e \\
\text{s.t.} & \quad \sum_{e \text{ out of } v} x_e = \sum_{e \text{ in to } v} x_e \quad \forall v \neq s, t \\
& \quad x_e \leq c(e) \quad \forall e \\
& \quad x_e \geq 0 \quad \forall e
\end{align*}
\]

Q: Do we get exactly the same properties as Ford Fulkerson?
A: Not necessarily, the max-flow may not be integral
Example 3: Min Cost Max Flow

Suppose we can route 100 gallons of water from s to t. But for every pipe edge e we have to pay $p(e)$ for each gallon of water that we send through e.

Goal: Send 100 gallons of water from s to t with minimum possible cost

\[
\begin{align*}
\min & \quad \sum_{e \in E} p(e) \cdot x_e \\
\text{s.t.} \quad & \sum_{e \text{ out of } v} x_e = \sum_{e \text{ into } v} x_e \quad \forall v \neq s, t \\
& \sum_{e \text{ out of } s} x_e = 100 \\
x_e & \leq c(e) \quad \forall e \\
x_e & \geq 0 \quad \forall e
\end{align*}
\]
Linear Programming and Approximation Algorithms
Integer Program for Vertex Cover

Given a graph \(G=(V,E)\) with costs \(c_v\) on the vertices. Find a vertex cover of \(G\) with minimum cost, i.e., \(\min \sum_{v \in S} c_v\)

Write LP with Integrality Constraint:

- Variables: One variable \(x_v\) for each vertex \(v\)
- Bound: \(x_v \in \{0,1\}\)
- Edge cover Constraints: \(x_u + x_v \geq 1\) for every edge \((u,v) \in E\)
- Obj: \(\min \sum_v c_v x_v\)
IP for Vertex Cover

\[
\begin{align*}
\min & \quad \sum_v c_v x_v \\
\text{s.t.,} & \quad x_v + x_u \geq 1 \quad \forall (u, v) \in E \\
& \quad x_v \in \{0, 1\} \quad \forall v \in V
\end{align*}
\]

Fact: The optimum solution of the above program is min vertex cover.

Pf:

- First, any vertex cover \(S \), \(x_v = \begin{cases} 1 & \text{if } v \in S \\ 0 & \text{o.w.} \end{cases} \) is feasible.
- For any feasible solution \(x \), the \(S = \{v: x_v = 1\} \) is a vertex cover.

IP is NP-complete general! But there are fast algorithms in practice that often work.
LP Relaxation Vertex Cover

\[
\begin{align*}
\text{min} & \quad \sum_v c_v x_v \\
\text{s.t.,} & \quad x_v + x_u \geq 1 \quad \forall (u, v) \in E \\
& \quad 0 \leq x_v \leq 1 \quad \forall v \in V
\end{align*}
\]

Fact: \(\text{OPT-LP} \leq \text{Min Vertex Cover} \)

Pf: Min vertex cover is a feasible solution of the LP

Q: Can we hope to get an integer solution?
Bad Optimum solutions

\[
\begin{align*}
\min & \quad \sum_{v} c_v x_v \\
\text{s.t.,} & \quad x_v + x_u \geq 1 \quad \forall (u, v) \in E \\
& \quad 0 \leq x_v \leq 1 \quad \forall v \in V
\end{align*}
\]

A feasible solution:
Set \(x_v = 0.5 \) for all \(v \) in the complete graph

If \(c_v = 1 \) for all \(v \), then
Min vertex cover=\(n - 1 \)
But OPT LP=\(n/2 \).
Approximation Alg for Vertex Cover

Given a graph $G=(V,E)$ with costs c_v on the edges. Find a vertex cover of G with minimum cost, i.e., $\min \sum_{v \in S} c_v$

Thm: There is a 2-approximation Alg for weighted vertex cover.

ALG: Solve LP. Let $S = \{v: x_v \geq 0.5\}$. Output S.

Pf: First, for every edge (u, v), $x_u + x_v \geq 1$ So at least one is in S. So, S is a vertex cover.
Second,

$$\sum_{v \in S} c_v \leq \sum_{v \in S} c_v (2x_v) \leq 2 \text{OPTLP} \leq \text{Min Vertex Cov}$$