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Edge Disjoint Paths



Edge Disjoint Paths Problem

Given a digraph G = (V, E) and two nodes s and t, find the max 
number of edge-disjoint s-t paths.

Def.  Two paths are edge-disjoint if they have no edge in 
common.

Ex:  communication networks.
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Max Flow Formulation

Assign a unit capacitary to every edge. Find Max flow from s to t.

Thm. Max number edge-disjoint s-t paths equals max flow value.
Pf.   £ 
Suppose there are k edge-disjoint paths 𝑃!, … , 𝑃".
Set f(e) = 1 if e participates in some path 𝑃#  ;  else set f(e) = 0.
Since paths are edge-disjoint, f is a flow of value k.   ▪
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Max Flow Formulation

Thm. Max number edge-disjoint s-t paths equals max flow value.
Pf.  ≥  Suppose max flow value is k
Integrality theorem  Þ  there exists 0-1 flow f of value k.
Consider edge (s, u) with f(s, u) = 1.
• by conservation, there exists an edge (u, v) with f(u, v) = 1
• continue until reach t, always choosing a new edge
This produces k (not necessarily simple) edge-disjoint paths.   ▪
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We can return to u so we can have cycles. But we can eliminate cycles if desired



Perfect Bipartite Matching



Perfect Bipartite Matching

Def.  A matching M Í E is perfect if each node appears in 
exactly one edge in M.

Q.  When does a bipartite graph have a perfect matching?

Structure of bipartite graphs with perfect matchings:
• Clearly we must have |X| = |Y|.
• What other conditions are necessary?
• What conditions are sufficient?

7



Perfect Bipartite Matching: N(S)

Def. Let S be a subset of nodes, 
and let N(S) be the set of nodes 
adjacent to nodes in S.

Observation.  If a bipartite graph G has a 
perfect matching, then |N(S)| ³ |S| for all subsets S ⊆ 𝑋.
Pf. Each 𝑣 ∈ 𝑆 has to be matched to a unique node in N(S).
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Marriage Theorem

Thm: [Frobenius 1917, Hall 1935]  Let 𝐺	 = 	 (𝑋 ∪ 𝑌, 𝐸) be a 
bipartite graph with |X| = |Y|. 
Then, G has a perfect matching iff 𝑁 𝑆 ≥ 𝑆  for all 
subsets 𝑆 ⊆ 𝑋.

Pf.  Þ  
This was the previous observation.
If |N(S)| < |S| for some S, then there is no perfect matching.
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Marriage Theorem

Pf.  ∃𝑆 ⊆ 𝑋 s.t., |𝑁 𝑆 | < |𝑆| ⇐ G does not a perfect matching
Formulate as a max-flow and let (𝐴, 𝐵) be the min s-t cut
G has no perfect matching => 𝑣 𝑓∗ < |𝑋|. So, 𝑐𝑎𝑝 𝐴, 𝐵 < |𝑋|
Define 𝑋% = 𝑋 ∩ 𝐴, 𝑋& = 𝑋 ∩ 𝐵, 𝑌% = 𝑌 ∩ 𝐴
Then, 𝑐𝑎𝑝 𝐴, 𝐵 = 𝑋& + |𝑌%|
Since min-cut does not use ∞ edges, 𝑁 𝑋% ⊆ 𝑌%
𝑁 𝑋% ≤ 𝑌% = 𝑐𝑎𝑝 𝐴, 𝐵 − 𝑋& = 𝑐𝑎𝑝 𝐴, 𝐵 − 𝑋 + 𝑋% < |𝑋%|
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Bipartite Matching Running Time

Which max flow algorithm to use for bipartite matching?
Generic augmenting path:  O(m val(f*) ) = O(mn).
Capacity scaling:  O(m2 log C )  = O(m2).
Shortest augmenting path:  O(m n1/2).
Recent algorithms 𝑂(𝑚!'( ! ) [Chen-Kyng-Liu-Peng-

Gutenberg-Sachdeva’22]

Non-bipartite matching.
Structure of non-bipartite graphs is more complicated, but

well-understood.  [Tutte-Berge, Edmonds-Galai]
Blossom algorithm:  O(n4).   [Edmonds 1965]
Best known:  O(m n1/2).        [Micali-Vazirani 1980]
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Network Connectivity

Given a digraph G = (V, E) and two nodes s and t,  find min 
number of edges whose removal disconnects t from s.

Def.  A set of edges F Í E disconnects t from s if all s-t paths 
uses at least one edge in F.

Ex: In testing network reliability
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Network Connectivity using Min Cut

Thm.  [Menger 1927]  The max number of edge-disjoint s-t paths is 
equal to the min number of edges whose removal disconnects t from s.

Pf. 
i) We showed that max number edge disjoint s-t paths = max flow.
ii) Max-flow Min-cut theorem => min s-t cut = max-flow
iii) For a s-t cut (A,B), cap(A,B) is equal to the number of edges out of  
A. In other words, every s-t cut (A,B) 
corresponds to cap(A,B) edges whose 
removal disconnects s from t.

So, max number of edge disjoint s-t paths
= min number of edges to disconnect s from t.
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Image Segmentation

Given an image we want to separate foreground from background
• Central problem in image processing.
• Divide image into coherent regions.
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Foreground / background segmentation

Label each pixel as foreground/background.
• V = set of pixels, E = pairs of neighboring pixels.
• 𝑎# ≥ 0 is likelihood pixel i in foreground.
• 𝑏# ≥ 0 is likelihood pixel i in background.
• 𝑝#,% ≥ 0 is separation penalty for labeling one of i

and j as foreground, and the other as background.
Goals.
Accuracy:  if ai  > bi in isolation, prefer to label i in foreground.
Smoothness: if many neighbors of i are labeled foreground, we should 
be inclined to label i as foreground.
Find partition (A, B) that maximizes:

*
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𝑎# +*
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𝑏% − *
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#∈!,%∈"

𝑝#,%
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Image Seg: Min Cut Formulation

Difficulties:
• Maximization (as opposed to minimization)
• No source or sink
• Undirected graph
Step 1: Turn into Minimization 
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Equivalent to minimizing

Equivalent to minimizing
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Min cut Formulation (cont’d)

G' = (V', E').
Add s to correspond to foreground;
Add t to correspond to background
Use two anti-parallel edges
   instead of undirected edge.
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Min cut Formulation (cont’d)

Consider min cut (A, B) in G’.  (A = foreground.)

Precisely the quantity we want to minimize.
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