CSE 421

Bellman-Ford ALG, Network Flows

Shayan Oveis Gharan

Shortest Paths with Negative Edge
Weights

Shortest Paths with Neg Edge Weights

Given a weighted directed graph ¢ = (V, E) and a source vertex
s, where the weight of edge (u,v) is ¢, ,,

Goal: Find the shortest path from s to all vertices of G.

e o

Impossibility on Graphs with Neg Cycles

Observation: No solution exists if G has a negative cycle.

This is because we can minimize the length by going over the
cycle again and again.

So, suppose G does not have a negative cycle.

DP for Shortest Path

Def: Let OPT (v, i) be the length of the shortest s - v path with at
most i edges.

Let us characterize OPT (v, i).

Case 1: OPT (v,i) path has less than i edges.
« Then, OPT(v,i) = OPT(v,i — 1).

Case 2: OPT (v, i) path has exactly i edges.
 Lets,vq,v,,...,v;_1,v be the OPT (v, i) path with i edges.

 Then, s,vq,...,v;_1 must be the shortest s - v;_; path with at

most i — 1 edges. So,
OPT(U, i) = OPT(Ui_l;i — 1) + Coi_iv

DP for Shortest Path

Def: Let OPT (v, i) be the length of the shortest s - v path with at
most i edges.

(0 ifv=s

OPT(v,i) =4 @ ifv#s,i=0
min(OPT (v,i — 1), min OPT(u,i—1) + cy)
L u:(u,v) an edge '

So, for every v, OPT(v,?) is the shortest path from s to v.

But how long do we have to run?

Since G has no negative cycle, it has at most n — 1 edges. So,
OPT(v,n — 1) is the answer.

Bellman Ford Algorithm

for v=1 to n
if v#s then
M[v,0]=00
M[s,0]=0.

for i=1 to n-1
for v=1 to n
M[v,i]=M[v,i-1]
for every edge (u,v)
M[v,i]=min (M[v,i], M[u,i-1]+c,)

Running Time: 0(nm)
Can we test if G has negative cycles?

Bellman Ford Algorithm

for v=1 to n
if v#s then
M[v,0]=00
M[s,0]=0.

for i=1 to n-1
for v=1 to n
M[v,i]=M[v,i-1]
for every edge (u,v)
M[v,i]=min (M[v,i], M[u,i-1]+c,)

Running Time: 0(nm)
Can we test if G has negative cycles?
Yes, run for i=1...2n and see if the M[v,n-1] is different from M[v,2n]

DP Techniques Summary

Recipe:
* Follow the natural induction proof.

« Find out additional assumptions/variables/subproblems that you
need to do the induction

« Strengthen the hypothesis and define w.r.t. new subproblems
Dynamic programming techniques.

 Whenever a problem is a special case of an NP-hard problem an
ordering is important:

« Adding a new variable: knapsack.
« Dynamic programming over intervals: RNA secondary structure.

Top-down vs. bottom-up:
« Different people have different intuitions
« Bottom-up is useful to optimize the memory

Network Flows

Soviet Rail Network

Reference: On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.

Network Flow Applications

Max flow and min cut.

« Two very rich algorithmic problems.

« Cornerstone problems in combinatorial optimization.
« Beautiful mathematical duality.

Nontrivial applications / reductions.
« Data mining.

* Open-pit mining.

* Project selection.

« Airline scheduling.

« Bipartite matching.

« Baseball elimination.

* Image segmentation.

* Network connectivity.

Minimum s-t Cut Problem

Given a directed graph G = (V, E) = directed graph and two
distinguished nodes: s = source, t = sink.

Suppose each directed edge e has a nonnegative capacity c(e)

Goal: Find a cut separating s, t that cuts the minimum capacity of
edges.

source 5 8 \:7/6\ 10 sink
. 15
capacity =¥ \
30 » 7
13

s-t cuts

Def. An s-t cut is a partition (A, B) of Vwiths € Aand t € B.

Def. The capacity of a cut (A, B): cap(4,B) = Y., qut of 4 €(€)

10

5

15

<
~

15

30

®

15

©

15

@

Capacity = 10 + 5 + 15 = 30

10

10 (1)

10

14

s-t cuts

Def. An s-t cut is a partition (A, B) of V withs € Aand t € B.

Def. The capacity of a cut (A, B): cap(4, B) = Xy v)uecaven (W V)

Capacity =9+ 15+ 8+ 30

»‘\= 62
1

15

Minimum s-t Cut Problem

Given a directed graph G = (V, E) = directed graph and two
distinguished nodes: s = source, t = sink.

Suppose each directed edge e has a nonnegative capacity c(e)
Goal: Find a s-t cut of minimum capacity

/ﬁ< 2 Capacity = 10 + 8 + 10 = 28
15 10

) 4
sourcef (s 5 =\L\ \F 10 sink
15 10

capacity =~ - 15 ~ \/
16

s-t Flows

Def. An s-t flow is a function that satisfies:
« Foreache€eE:0<f(e) <c(e) (capacity)
« Foreachv eV —{s,t}: Dcintorf(€) = 2eoutofvf(€) (conservation)

Def. The value of a flow fis: v(f) = 2., qutofs f (€)

z) ®
4 0 0
10 4 4 15 15 0 10
0 4 4
0 0
4 0 6 15 0 10

capacity — 15

flow — O 0 Value = 4

© 30 @) 17

s-t Flows

Def. An s-t flow is a function that satisfies:

« Foreache€eE:0<f(e) <c(e)

(capacity)

« Foreachv eV —{s,t}: Dcintorf(€) = 2eoutofvf(€) (conservation)

Def. The value of a flow f is: v(f) = Do outofs/f (€)

10
10

3

capacity — 15
flow — 11

5 \
N

SN

15 10

8 8
10

©

10
15 10

Value = 24
18

Maximum s-t Flow Problem

Goal: Find a s-t flow of largest value.

AT

4 0 15 10

4 \ :
s 5 »(3) (6 10

o

10
15 10

capacity — 15
flow — 14 Value = 28
19

Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.
Then, the net flow sent across the cut is equal to the amount leaving s.

> f@-) fe)=v(p

eoutofA einto4

Value = 24

20

Pf of Flow value Lemma

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.

Then, the net flow sent across the cut is equal to the amount leaving s.

D fE@— > [=v(f)

e outof A einto4

Pf.

V(=) [
eoutofs
By conservation of flow, = 2 < 2 f(e) — 2 f(e))
all terms except v=s are0 ved \e outof v eintouv

All contributions due to Z f(e) — Z f(e)

internal edges cancel out
eoutof A einto A

21

Weak Duality of Flows and Cuts

Cut Capacity lemma. Let f be any flow, and let (A, B) be any s-t
cut. Then the value of the flow is at most the capacity of the cut.

v(f) < cap(4, B)

v(f)=24, capacity=9+15+8+30=62

10 15

3 8 8

k »(6) 10

>~ .

capacity — 15
flow — 11

Weak Duality of Flows and Cuts

Cut capacity lemma. Let f be any flow, and let (A, B) be any s-t cut.
Then the value of the flow is at most the capacity of the cut.

Pf.

v(f) < cap(4, B)

vN= Y fO-) [.

<

<

eoutof A einto A O‘\

4
8
6
f(e) Z i
eo;fA ° O
7

Z c(e) = cap(4,B)

eoutof A

23

Certificate of Optimality

Corollary: Suppose there is a s-t cut (A,B) such that
v(f) = cap(4, B)
Then, fis a maximum flow and (A,B) is a minimum cut.

v(f)=28, cap(A,B)=28

fa

24

A Greedy Algorithm for Max Flow

Start with f(e) = 0 for all edge e € E.

Find an s-t path P where each edge has f(e) < c(e).

Augment flow along path P.
Repeat until you get stuck.

1
20};/0\0

20

30% 20

10

e

10

20

>
20

25

A Greedy Algorithm for Max Flow

Start with f(e) = 0 for all edge e € E.

Find an s-t path P where each edge has f(e) < c(e).
Augment flow along path P.

Repeat until you get stuck.

| Local Optimum = Global Optimum |

/@\ /@\

20 0 20 10

20 10 20 10
30 20 3010

10 20 10

X 20
\@/20 10\@/20

Greedy = 20 OPT =30

Residual Graph

p capacity
Original edge: e =(u, v) e E. @ 17 ———()
* Flow f(e), capacity c(e). 5
flow
Residual edge.
 "Undo" flow sent.
« e=(u,v)andeR = (v, u). p 22?:(‘;?}'/
« Residual capacity: CUD'(11 /@
cr(e) = cle) - f(e). Jeck 6'}es.idual
f (e) if e"€E capacity

Residual graph: G; = (V, E;).
» Residual edges with positive residual capacity.

e Er ={e:f(e)< c(e)yufe: f(e®) > 0}.

27

Ford-Fulkerson Alg: Greedy on G;

2 4 :\4
0) capacity
0 °
10 20 8\0/6 10
@/10 P 9 ® 10>@
0 0 0
/[2“\ 4 >@\Find Path
10 2 8\6 10
@/ 10 1©), 9 ~(5) 10\®

28

Ford-Fulkerson Alg: Greedy on G;

29

Ford-Fulkerson Alg: Greedy on G;

10

0

:\ﬂ.
4/

capacity

6
5 10>®

4
6 2 8
S 10 =(§) 9

wate Residual
4

4

/@ 4

- 4

" £ 0 8\\\\\\\\\\::’

@/ 10 -® 9

0 0

—
2
Gf: &3\

4
\\\\\\\\\\\Yé
-®

6%
10 g\

30

Ford-Fulkerson Alg: Greedy on G;

:\4
) capacity
4/

10

5 10>®

0
0 70 8\0/6
@/10 @ 9
0

0

ﬁ< Nﬁnd Path
4

~,

g)_

10

8

31

Ford-Fulkerson Alg: Greedy on G;

Update Flow

2 4 ’C‘D\
) capacity
- A \ . 4 /
10 2 2 8\0/6 10
CS}/) P 9 ® 10>@
0 2 2
—
Gf: 47\ .
8
s 10) ——— L)i

Ford-Fulkerson Alg: Greedy on G;

10 2 9
@/m G

0
8\0/6
9 ~(5) 10>®
2

:\4
) capacity
4/

10

2

— Update Residual
Gﬁ\ N)

&

\

\

10

k

Ford-Fulkerson Alg: Greedy on G;

2 4 ’C‘D\
) capacity
| A \ . 4 /
10 2 2 8\0/6 10
CS}/10 P 9 ® 10>@
0 Z 2
— Find Path
: 6?\ .
@/&10 \\& \ :

2

Ford-Fulkerson Alg: Greedy on G;

Update Flow 4

2 4 ’C‘D\
) capacity
G: 10 \ 4 4 /
10 2 2 8\0/6 10
CS}/10 P 9 ® 10>@
0 2 6
—
Gf: 6?\ .
@/&10 \\k \ :

2

35

Ford-Fulkerson Alg: Greedy on G;

:\4
) capacity
4/

4
10 2 2 8\0/6 10
CS}/10 P 9 ® 10>@

0 2

6

_— Update Residual
2

| %

36

Gs:

Ford-Fulkerson Alg: Greedy on G;

2 4 ’C‘D\
) capacity
10 \) 4 g

10 2 9
@/10 -3
0

Find Path

Qi

@Lm

N

Ford-Fulkerson Alg: Greedy on G;

Update Flow 2 4 :@)\
) capacity
G- 10 \ A 6

@L R &

Ford-Fulkerson Alg: Greedy on G;

2 4 ’C‘D\
) capacity
10 \ 5 6 /
10 20 8\2/6 10
CS}/) P 9 ® 10>@

2 2 6

— Update Residual
2
! 2 \
3) e

A_/‘\

39

Ford-Fulkerson Alg: Greedy on G;

4
2 4 ’C‘D\
) capacity
10 \ 5 6 /
10 20 8\2/6 10
@/10 (3 9 -5 10>®
2 2 6

4

ind Path
ﬂzs\(x
6
10 6

2
2

2
7
2

F
)
4
2 4
6

40

Ford-Fulkerson Alg: Greedy on G;

Update Flow 4
2 4 ’C‘D\
) capacity
G: 10 \ 6 ° /
10 20 8\2/6 10
CS}/10 P 9 ® 10>@

6 6 10

4

ﬂzs\g)w
6 A
Gy 10 4 6
2 2 2 4
2 2 6

41

Ford-Fulkerson Alg: Greedy on G;

2 4 ’C‘D\
) capacity
G: 10 \ 6 ° /
10 20 8\2/6 10
CS}/10 P 9 ® 10>@
6 6 10

2/ Update Residual
Gt 1o/<s 5
2 \

s 4 fv\

6A 10

42

Ford-Fulkerson Alg: Greedy on G;

2 4 ’C‘D\
) capacity
| o \ A 6 /
10 20 8\2/6 10
CS}/) P 9 ® 10>@

6 6 10

Find Path

10

Ford-Fulkerson Alg: Greedy on G;

Update FLow 4

2 4 ’C‘D\
) capacity
G: 10 \ 6 0/
10 20 8\5/6 10
CS}/10 P 9 ® 10>@
9

9 10

Ford-Fulkerson Alg: Greedy on G;

4
2 4 =@\
) capacity
10 \ 5 9 /
10 20 8\5/6 10
@/10 P 9 ® 10>@
9 9 10

4 ind Path
6
10 9

2

) 4

2 TR
9

F
ax
1
2 1
5
547
9 10

45

Augmenting Path Algorithm

Augment (£, c, P) {
b <« bottleneck (P) <— — Smallest capacity edge on P
foreach e € P {
if (e € E) f(e) « f(e) + b «— Forward edge
c(e) «< c(e) - b
c(eR) <« c(e?) + b

return £

}

Ford-Fulkerson (G, s, t, c) {
foreach e ¢ E f(e) « 0. Gf is residual graph
while (there exists augmenting path P) ({
f < Augment(f, c, P)

return £

Max Flow Min Cut Theorem

Augmenting path theorem. Flow fis a max flow iff there are no
augmenting paths.

Max-flow min-cut theorem. [Ford-Fulkerson 1956] The value of the
max s-t flow is equal to the value of the min s-t cut.

Proof strategy. We prove both simultaneously by showing the TFAE:

(i) There exists a cut (A, B) such that v(f) = cap(A, B).
(ii) Flow f is a max flow.
(i) There is no augmenting path relative to f.

(i) = (ii) This was the corollary to weak duality lemma.

(i) = (iii) We show contrapositive.
Let f be a flow. If there exists an augmenting path, then we can
improve f by sending flow along that path.

47

Pf of Max Flow Min Cut Theorem

(iit) => (i)
No augmenting path for f => there is a cut (A,B): v(f)=cap(A,B)

« Letf be a flow with no augmenting paths.

« Let A be set of vertices reachable from s in residual graph.
« By definition of A, s € A.

« By definition of f, t ¢ A.

vH= Y f@- Y fe)

eoutofA einto A

= 2 c(e)

eoutof A

= cap(4, B)

48

Running Time

Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value f(e) and every residual capacities
¢, (e) remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most
v(f") £nC iterations, if f* is optimal flow.
Pf. Each augmentation increase value by at least 1.

Corollary. If C =1, Ford-Fulkerson runs in O(mn) time.

Integrality theorem. If all capacities are integers, then there

exists a max flow f for which every flow value f(e) is an integer.
Pf. Since algorithm terminates, theorem follows from invariant.

49

