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Shortest Paths with Negative Edge
Weights



Shortest Paths with Neg Edge Weights

Given a weighted directed graph ¢ = (V, E) and a source vertex
s, where the weight of edge (u,v) is ¢, ,,

Goal: Find the shortest path from s to all vertices of G.
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Impossibility on Graphs with Neg Cycles

Observation: No solution exists if G has a negative cycle.

This is because we can minimize the length by going over the
cycle again and again.

So, suppose G does not have a negative cycle.




DP for Shortest Path

Def: Let OPT (v, i) be the length of the shortest s - v path with at
most i edges.

Let us characterize OPT (v, i).

Case 1: OPT (v,i) path has less than i edges.
« Then, OPT(v,i) = OPT(v,i — 1).

Case 2: OPT (v, i) path has exactly i edges.
 Lets,vq,v,,...,v;_1,v be the OPT (v, i) path with i edges.

 Then, s,vq,...,v;_1 must be the shortest s - v;_; path with at

most i — 1 edges. So,
OPT(U, i) = OPT(Ui_l;i — 1) + Coi_iv



DP for Shortest Path

Def: Let OPT (v, i) be the length of the shortest s - v path with at
most i edges.

(0 ifv=s

OPT(v,i) =4 @ ifv#s,i=0
min(OPT (v,i — 1), min OPT(u,i—1) + cy)
L u:(u,v) an edge '

So, for every v, OPT(v,?) is the shortest path from s to v.

But how long do we have to run?

Since G has no negative cycle, it has at most n — 1 edges. So,
OPT(v,n — 1) is the answer.



Bellman Ford Algorithm

for v=1 to n
if v#s then
M[v,0]=00
M[s,0]=0.

for i=1 to n-1
for v=1 to n
M[v,i]=M[v,i-1]
for every edge (u,v)
M[v,i]=min (M[v,i], M[u,i-1]+c, )

Running Time: 0(nm)
Can we test if G has negative cycles?



Bellman Ford Algorithm

for v=1 to n
if v#s then
M[v,0]=00
M[s,0]=0.

for i=1 to n-1
for v=1 to n
M[v,i]=M[v,i-1]
for every edge (u,v)
M[v,i]=min (M[v,i], M[u,i-1]+c, )

Running Time: 0(nm)
Can we test if G has negative cycles?
Yes, run for i=1...2n and see if the M[v,n-1] is different from M[v,2n]



DP Techniques Summary

Recipe:
* Follow the natural induction proof.

« Find out additional assumptions/variables/subproblems that you
need to do the induction

« Strengthen the hypothesis and define w.r.t. new subproblems
Dynamic programming techniques.

 Whenever a problem is a special case of an NP-hard problem an
ordering is important:

« Adding a new variable: knapsack.
« Dynamic programming over intervals: RNA secondary structure.

Top-down vs. bottom-up:
« Different people have different intuitions
« Bottom-up is useful to optimize the memory



Network Flows



Soviet Rail Network

Reference: On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.



Network Flow Applications

Max flow and min cut.

« Two very rich algorithmic problems.

« Cornerstone problems in combinatorial optimization.
« Beautiful mathematical duality.

Nontrivial applications / reductions.
« Data mining.

* Open-pit mining.

* Project selection.

« Airline scheduling.

« Bipartite matching.

« Baseball elimination.

* Image segmentation.

* Network connectivity.



Minimum s-t Cut Problem

Given a directed graph G = (V, E) = directed graph and two
distinguished nodes: s = source, t = sink.

Suppose each directed edge e has a nonnegative capacity c(e)

Goal: Find a cut separating s, t that cuts the minimum capacity of
edges.
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s-t cuts

Def. An s-t cut is a partition (A, B) of Vwiths € Aand t € B.

Def. The capacity of a cut (A, B): cap(4,B) = Y., qut of 4 €(€)
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s-t cuts

Def. An s-t cut is a partition (A, B) of V withs € Aand t € B.

Def. The capacity of a cut (A, B): cap(4, B) = Xy v)uecaven (W V)

Capacity =9+ 15+ 8+ 30
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Minimum s-t Cut Problem

Given a directed graph G = (V, E) = directed graph and two
distinguished nodes: s = source, t = sink.

Suppose each directed edge e has a nonnegative capacity c(e)
Goal: Find a s-t cut of minimum capacity

/ﬁ< 2 Capacity = 10 + 8 + 10 = 28
15 10
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s-t Flows

Def. An s-t flow is a function that satisfies:
« Foreache€eE:0<f(e) <c(e) (capacity)
« Foreachv eV —{s,t}: Dcintorf(€) = 2eoutofvf(€) (conservation)

Def. The value of a flow fis: v(f) = 2., qutofs f (€)
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s-t Flows

Def. An s-t flow is a function that satisfies:

« Foreache€eE:0<f(e) <c(e)

(capacity)

« Foreachv eV —{s,t}: Dcintorf(€) = 2eoutofvf(€) (conservation)

Def. The value of a flow f is: v(f) = Do outofs/f (€)
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Maximum s-t Flow Problem

Goal: Find a s-t flow of largest value.
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Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.
Then, the net flow sent across the cut is equal to the amount leaving s.

> f@- ) fe)=v(p
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Pf of Flow value Lemma

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.

Then, the net flow sent across the cut is equal to the amount leaving s.

D fE@— > [ =v(f)

e outof A einto4

Pf.

V(= ) [
eoutofs
By conservation of flow, = 2 < 2 f(e) — 2 f(e))
all terms except v=s are0 ved \e outof v eintouv

All contributions due to Z f(e) — Z f(e)

internal edges cancel out
eoutof A einto A
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Weak Duality of Flows and Cuts

Cut Capacity lemma. Let f be any flow, and let (A, B) be any s-t
cut. Then the value of the flow is at most the capacity of the cut.

v(f) < cap(4, B)

v(f)=24, capacity=9+15+8+30=62
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Weak Duality of Flows and Cuts

Cut capacity lemma. Let f be any flow, and let (A, B) be any s-t cut.
Then the value of the flow is at most the capacity of the cut.

Pf.

v(f) < cap(4, B)

vN= Y fO- ) [ .
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Z c(e) = cap(4,B)

eoutof A
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Certificate of Optimality

Corollary: Suppose there is a s-t cut (A,B) such that
v(f) = cap(4, B)
Then, fis a maximum flow and (A,B) is a minimum cut.

v(f)=28, cap(A,B)=28

fa
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A Greedy Algorithm for Max Flow

Start with f(e) = 0 for all edge e € E.

Find an s-t path P where each edge has f(e) < c(e).

Augment flow along path P.
Repeat until you get stuck.
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A Greedy Algorithm for Max Flow

Start with f(e) = 0 for all edge e € E.

Find an s-t path P where each edge has f(e) < c(e).
Augment flow along path P.

Repeat until you get stuck.

| Local Optimum = Global Optimum |
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Residual Graph

p capacity
Original edge: e =(u, v) e E. @ 17 ———()
* Flow f(e), capacity c(e). 5
flow
Residual edge.
 "Undo" flow sent.
« e=(u,v)andeR = (v, u). p 22?:(‘;?}'/
« Residual capacity: CUD'( 11 /@
cr(e) = cle) - f(e). Jeck 6'}es.idual
f (e) if e"€E capacity

Residual graph: G; = (V, E;).
» Residual edges with positive residual capacity.

e Er ={e:f(e)< c(e)yufe: f(e®) > 0}.
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Ford-Fulkerson Alg: Greedy on G;

2 4 :\4
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Ford-Fulkerson Alg: Greedy on G;
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Ford-Fulkerson Alg: Greedy on G;
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Ford-Fulkerson Alg: Greedy on G;
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Ford-Fulkerson Alg: Greedy on G;

Update Flow
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Ford-Fulkerson Alg: Greedy on G;
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Ford-Fulkerson Alg: Greedy on G;
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Ford-Fulkerson Alg: Greedy on G;

Update Flow 4
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Ford-Fulkerson Alg: Greedy on G;
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Gs:

Ford-Fulkerson Alg: Greedy on G;
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Ford-Fulkerson Alg: Greedy on G;

Update Flow 2 4 :@)\
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Ford-Fulkerson Alg: Greedy on G;

2 4 ’C‘D\
) capacity
10 \ 5 6 /
10 20 8\2/6 10
CS}/ ) P 9 ® 10>@

2 2 6

— Update Residual
2
! 2 \
3) e

A_/‘\

39



Ford-Fulkerson Alg: Greedy on G;
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Ford-Fulkerson Alg: Greedy on G;

Update Flow 4
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Ford-Fulkerson Alg: Greedy on G;
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Ford-Fulkerson Alg: Greedy on G;
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Ford-Fulkerson Alg: Greedy on G;

Update FLow 4

2 4 ’C‘D\
) capacity
G: 10 \ 6 0/
10 20 8\5/6 10
CS}/10 P 9 ® 10>@
9

9 10




Ford-Fulkerson Alg: Greedy on G;
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Augmenting Path Algorithm

Augment (£, c, P) {
b <« bottleneck (P) <— — Smallest capacity edge on P
foreach e € P {
if (e € E) f(e) « f(e) + b «— Forward edge
c(e) «< c(e) - b
c(eR) <« c(e?) + b

return £

}

Ford-Fulkerson (G, s, t, c) {
foreach e ¢ E f(e) « 0. Gf is residual graph
while (there exists augmenting path P) ({
f < Augment(f, c, P)

return £



Max Flow Min Cut Theorem

Augmenting path theorem. Flow fis a max flow iff there are no
augmenting paths.

Max-flow min-cut theorem. [Ford-Fulkerson 1956] The value of the
max s-t flow is equal to the value of the min s-t cut.

Proof strategy. We prove both simultaneously by showing the TFAE:

(i) There exists a cut (A, B) such that v(f) = cap(A, B).
(ii) Flow f is a max flow.
(i) There is no augmenting path relative to f.

(i) = (ii) This was the corollary to weak duality lemma.

(i) = (iii) We show contrapositive.
Let f be a flow. If there exists an augmenting path, then we can
improve f by sending flow along that path.
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Pf of Max Flow Min Cut Theorem

(iit) => (i)
No augmenting path for f => there is a cut (A,B): v(f)=cap(A,B)

« Letf be a flow with no augmenting paths.

« Let A be set of vertices reachable from s in residual graph.
« By definition of A, s € A.

« By definition of f, t ¢ A.

vH= Y f@- Y fe)

eoutofA einto A

= 2 c(e)

eoutof A

= cap(4, B)
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Running Time

Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value f(e) and every residual capacities
¢, (e) remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most
v(f") £nC iterations, if f* is optimal flow.
Pf. Each augmentation increase value by at least 1.

Corollary. If C =1, Ford-Fulkerson runs in O(mn) time.

Integrality theorem. If all capacities are integers, then there

exists a max flow f for which every flow value f(e) is an integer.
Pf. Since algorithm terminates, theorem follows from invariant.
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