CSE 421

Bellman-Ford ALG, Network Flows

Shayan Oveis Gharan

Shortest Paths with Negative Edge Weights

Shortest Paths with Neg Edge Weights

Given a weighted directed graph $G=(V, E)$ and a source vertex s, where the weight of edge (u, v) is $c_{u, v}$
Goal: Find the shortest path from s to all vertices of G.

Impossibility on Graphs with Neg Cycles

Observation: No solution exists if G has a negative cycle.

This is because we can minimize the length by going over the cycle again and again.

So, suppose G does not have a negative cycle.

DP for Shortest Path

Def: Let $\operatorname{OPT}(v, i)$ be the length of the shortest $s-v$ path with at most i edges.
Let us characterize $\operatorname{OPT}(v, i)$.

Case 1: $O P T(v, i)$ path has less than i edges.

- Then, $\operatorname{OPT}(v, i)=O P T(v, i-1)$.

Case 2: $\operatorname{OPT}(v, i)$ path has exactly i edges.

- Let $s, v_{1}, v_{2}, \ldots, v_{i-1}, v$ be the $O P T(v, i)$ path with i edges.
- Then, $s, v_{1}, \ldots, v_{i-1}$ must be the shortest $s-v_{i-1}$ path with at most i - 1 edges. So,

$$
O P T(v, i)=O P T\left(v_{i-1}, i-1\right)+c_{v_{i-1}, v}
$$

DP for Shortest Path

Def: Let $\operatorname{OPT}(v, i)$ be the length of the shortest $s-v$ path with at most i edges.
$\operatorname{OPT}(v, i)=\left\{\begin{array}{lr}0 & \text { if } v=s \\ \infty & \text { if } v \neq s, i=0 \\ \min \left(\operatorname{OPT}(v, i-1), \min _{u:(u, v) \text { an edge }} \operatorname{OPT}(u, i-1)+c_{u, v}\right)\end{array}\right.$

So, for every $\mathrm{v}, \operatorname{OPT}(v, ?)$ is the shortest path from s to v. But how long do we have to run?
Since G has no negative cycle, it has at most $n-1$ edges. So, $\operatorname{OPT}(v, n-1)$ is the answer.

Bellman Ford Algorithm

```
for v=1 to n
    if v}=\boldsymbol{S}\mathrm{ then
    M[v,0]=\infty
M[s,0]=0.
for i=1 to n-1
    for v=1 to n
        M[v,i]=M[v,i-1]
        for every edge (u,v)
        M[v,i]=min(M[v,i], M[u,i-1]+cu,v)
```

Running Time: $O(n m)$
Can we test if G has negative cycles?

Bellman Ford Algorithm

```
for v=1 to n
    if v}=\boldsymbol{S}\mathrm{ then
        M[v,0]=\infty
M[s,0]=0.
for i=1 to n-1
    for v=1 to n
        M[v,i]=M[v,i-1]
        for every edge (u,v)
        M[v,i]=min(M[v,i], M[u,i-1]+cu,v)
```

Running Time: $O(\mathrm{~nm})$
Can we test if G has negative cycles?
Yes, run for $\mathrm{i}=1 \ldots 2 \mathrm{n}$ and see if the $\mathrm{M}[\mathrm{v}, \mathrm{n}-1]$ is different from $\mathrm{M}[\mathrm{v}, 2 \mathrm{n}]$

DP Techniques Summary

Recipe:

- Follow the natural induction proof.
- Find out additional assumptions/variables/subproblems that you need to do the induction
- Strengthen the hypothesis and define w.r.t. new subproblems

Dynamic programming techniques.

- Whenever a problem is a special case of an NP-hard problem an ordering is important:
- Adding a new variable: knapsack.
- Dynamic programming over intervals: RNA secondary structure.

Top-down vs. bottom-up:

- Different people have different intuitions
- Bottom-up is useful to optimize the memory

Network Flows

Soviet Rail Network

Reference: On the history of the transportation and maximum flow problems. Alexander Schrijver in Math Programming, 91: 3, 2002.

Network Flow Applications

Max flow and min cut.

- Two very rich algorithmic problems.
- Cornerstone problems in combinatorial optimization.
- Beautiful mathematical duality.

Nontrivial applications / reductions.

- Data mining.
- Open-pit mining.
- Project selection.
- Airline scheduling.
- Bipartite matching.
- Baseball elimination.
- Image segmentation.
- Network connectivity.

Minimum s-t Cut Problem

Given a directed graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})=$ directed graph and two distinguished nodes: $s=$ source, $t=$ sink.
Suppose each directed edge e has a nonnegative capacity $c(e)$ Goal: Find a cut separating s, t that cuts the minimum capacity of edges.

s-t cuts

Def. An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$.
Def. The capacity of a cut (A, B): $\operatorname{cap}(A, B)=\sum_{e \text { out of } A} c(e)$

s-t cuts

Def. An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$.
Def. The capacity of a cut (A, B): $\operatorname{cap}(A, B)=\sum_{(u, v): u \in A, v \in B} c(u, v)$

Minimum s-t Cut Problem

Given a directed graph $G=(\mathrm{V}, \mathrm{E})=$ directed graph and two distinguished nodes: $s=$ source, $t=$ sink.
Suppose each directed edge e has a nonnegative capacity $c(e)$ Goal: Find a s-t cut of minimum capacity

s-t Flows

Def. An s-t flow is a function that satisfies:

- For each $e \in E: 0 \leq f(e) \leq c(e)$
- For each $v \in V-\{s, t\}: \sum_{e \text { in to } v} f(e)=\sum_{e \text { out of } v} f(e)$ (conservation)

Def. The value of a flow f is: $v(f)=\sum_{e \text { out of } s} f(e)$

s-t Flows

Def. An s-t flow is a function that satisfies:

- For each $e \in E: 0 \leq f(e) \leq c(e)$
- For each $v \in V-\{s, t\}: \sum_{e \text { in to } v} f(e)=\sum_{e \text { out of } v} f(e)$ (conservation)

Def. The value of a flow f is: $v(f)=\sum_{e \text { out of } s} f(e)$

Maximum s-t Flow Problem

Goal: Find a s-t flow of largest value.

Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

$$
\sum_{e \text { out of } A} f(e)-\sum_{e \text { in to } A} f(e)=v(f)
$$

Pf of Flow value Lemma

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

$$
\sum_{e \text { out of } A} f(e)-\sum_{e \text { in to } A} f(e)=v(f)
$$

Pf.

$$
v(f)=\sum_{e \text { out of } s} f(e)
$$

$\begin{gathered}\text { By conservation of flow, } \\ \text { all terms except } \mathrm{v}=\mathrm{s} \text { are } 0\end{gathered}$
$\begin{aligned} & \text { All contributions due to } \\ & \text { internal edges cancel out }\end{aligned} \longrightarrow=\sum_{v \in A}\left(\sum_{e \text { out of } v} f(e)-\sum_{e \text { in to } v} f(e)\right)$

Weak Duality of Flows and Cuts

Cut Capacity lemma. Let f be any flow, and let (A, B) be any s-t cut. Then the value of the flow is at most the capacity of the cut.

$$
v(f) \leq \operatorname{cap}(A, B)
$$

Weak Duality of Flows and Cuts

Cut capacity lemma. Let f be any flow, and let (A, B) be any s-t cut. Then the value of the flow is at most the capacity of the cut.

$$
v(f) \leq \operatorname{cap}(A, B)
$$

Pf.

$$
\begin{aligned}
v(f) & =\sum_{e \text { out of } A} f(e)-\sum_{e \text { into } A} f(e) \\
& \leq \sum_{\text {eout of } A} f(e) \\
& \leq \sum_{e \text { out of } A} c(e)=\operatorname{cap}(A, B)
\end{aligned}
$$

Certificate of Optimality

Corollary: Suppose there is a s-t cut (A, B) such that

$$
v(f)=\operatorname{cap}(A, B)
$$

Then, f is a maximum flow and (A, B) is a minimum cut.

A Greedy Algorithm for Max Flow

- Start with $f(e)=0$ for all edge $e \in E$.
- Find an s-t path P where each edge has $f(e)<c(e)$.
- Augment flow along path P.
- Repeat until you get stuck.

A Greedy Algorithm for Max Flow

- Start with $f(e)=0$ for all edge $e \in E$.
- Find an s-t path P where each edge has $f(e)<c(e)$.
- Augment flow along path P.
- Repeat until you get stuck.

Residual Graph

Original edge: $e=(u, v) \in E$.

- Flow f(e), capacity c(e).

Residual edge.

- "Undo" flow sent.
- $e=(u, v)$ and $e^{R}=(v, u)$.
- Residual capacity:

$$
c_{f}(e)=\left\{\begin{array}{l}
c(e)-f(e) \text { if } e \in E \\
f(e) \quad \text { if } e^{R} \in E
\end{array}\right.
$$

Residual graph: $G_{f}=\left(V, E_{f}\right)$.

- Residual edges with positive residual capacity.
- $E_{f}=\{e: f(e)<c(e)\} \cup\left\{e: f\left(e^{R}\right)>0\right\}$.

Ford-Fulkerson Alg: Greedy on G_{f}

Ford-Fulkerson Alg: Greedy on G_{f}

Ford-Fulkerson Alg: Greedy on G_{f}

Ford-Fulkerson Alg: Greedy on G_{f}

Ford-Fulkerson Alg: Greedy on G_{f}

Ford-Fulkerson Alg: Greedy on G_{f}

Ford-Fulkerson Alg: Greedy on G_{f}

Ford-Fulkerson Alg: Greedy on G_{f}

Ford-Fulkerson Alg: Greedy on G_{f}

Ford-Fulkerson Alg: Greedy on G_{f}

Ford-Fulkerson Alg: Greedy on G_{f}

Ford-Fulkerson Alg: Greedy on G_{f}

Augmenting Path Algorithm


```
Ford-Fulkerson(G, s, t, c) {
    foreach e f E f(e) \leftarrow 0. Gf is residual graph
    while (there exists augmenting path P) {
        f}\leftarrow\mathrm{ Augment(f, c, P)
}
    return f
}
```


Max Flow Min Cut Theorem

Augmenting path theorem. Flow f is a max flow iff there are no augmenting paths.
Max-flow min-cut theorem. [Ford-Fulkerson 1956] The value of the max s-t flow is equal to the value of the min s-t cut.
Proof strategy. We prove both simultaneously by showing the TFAE:
(i) There exists a cut (A, B) such that $v(f)=\operatorname{cap}(A, B)$.
(ii) Flow f is a max flow.
(iii) There is no augmenting path relative to f.
(i) \Rightarrow (ii) This was the corollary to weak duality lemma.
(ii) \Rightarrow (iii) We show contrapositive.

Let f be a flow. If there exists an augmenting path, then we can improve f by sending flow along that path.

Pf of Max Flow Min Cut Theorem

(iii) $=>$ (i)

No augmenting path for $f=>$ there is a cut (A, B) : $v(f)=\operatorname{cap}(A, B)$

- Let f be a flow with no augmenting paths.
- Let A be set of vertices reachable from s in residual graph.
- By definition of $A, s \in A$.
- By definition of $f, t \notin A$.

$$
\begin{aligned}
v(f) & =\sum_{e \text { out of } A} f(e)-\sum_{e \text { in to } A} f(e) \\
& =\sum_{e \text { out of } A} c(e) \\
& =\operatorname{cap}(A, B)
\end{aligned}
$$

Running Time

Assumption. All capacities are integers between 1 and C .
Invariant. Every flow value $f(e)$ and every residual capacities $c_{f}(e)$ remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most $v\left(f^{*}\right) \leq n C$ iterations, if f^{*} is optimal flow.
Pf. Each augmentation increase value by at least 1 .
Corollary. If $\mathrm{C}=1$, Ford-Fulkerson runs in $\mathrm{O}(\mathrm{mn})$ time.
Integrality theorem. If all capacities are integers, then there exists a max flow f for which every flow value $f(e)$ is an integer. Pf. Since algorithm terminates, theorem follows from invariant.

