
CSE 421

Dynamic Programming

Shayan Oveis Gharan

1

Sequence Alignment

Given two strings 𝑥!, … , 𝑥" and 𝑦!, … , 𝑦# find an alignment
with minimum number of mismatch and gaps.

An alignment is a set of ordered pairs (𝑥!! , 𝑦"!), 𝑥!" , 𝑦"" , … such
that 𝑖# < 𝑖$ < ⋯ and 𝑗# < 𝑗$ < ⋯

Example: CTACCG vs. TACATG.
Sol: We aligned
x2-y1, x3-y2, x4-y3, x5-y4, x6-y6.

So, the cost is 3.

2

C T A C C -

T A C A T-

G

G
y1 y2 y3 y4 y5 y6

x2 x3 x4 x5x1 x6

DP for Sequence Alignment

Let 𝑂𝑃𝑇(𝑖, 𝑗) be min cost of aligning 𝑥#, … , 𝑥! and 𝑦#, … , 𝑦"

Case 1: OPT matches 𝑥! , 𝑦"
• Then, pay mis-match cost if 𝑥! ≠ 𝑦" + min cost of aligning
𝑥#, … , 𝑥!%# and 𝑦#, … , 𝑦"%# i.e., 𝑂𝑃𝑇(𝑖 − 1, 𝑗 − 1)

Case 2: OPT leaves 𝑥! unmatched
• Then, pay gap cost for 𝑥! + 𝑂𝑃𝑇 𝑖 − 1, 𝑗

Case 3: OPT leaves 𝑦" unmatched
• Then, pay gap cost for 𝑦" + 𝑂𝑃𝑇(𝑖, 𝑗 − 1)

3

Bottom-up DP

4

Sequence-Alignment(m, n, x1x2...xm, y1y2...yn) {
 for i = 0 to m
 M[0, i] = i
 for j = 0 to n
 M[j, 0] = j

 for i = 1 to m
 for j = 1 to n
 M[i, j] = min((xi=yj ? 0:1) + M[i-1, j-1],
 1 + M[i-1, j],
 1 + M[i, j-1])
 return M[m, n]
}

Analysis: Θ(𝑚𝑛) time and space.
English words or sentences: m, n £ 10,..,20.
Computational biology: m = n = 100,000. 10 billions ops OK,
 but 40GB array?

Optimizing Memory

If we are not using strong induction in the DP, we just need to
use the last (row) of computed values.

5

Sequence-Alignment(m, n, x1x2...xm, y1y2...yn) {
 for i = 0 to m
 M[0, i] = i
 for j = 0 to n
 M[j, 0] = j

 for i = 1 to m
 for j = 1 to n
 M[i, j] = min((xi=yj ? 0:1) + M[i-1, j-1],
 1 + M[i-1, j],
 1 + M[i, j-1])
 return M[m, n]
} Just need 𝑖 − 1, 𝑖 rows

to compute M[i,j]

DP with 𝑂(𝑚 + 𝑛) memory

• Keep an Old array containing values of the last row
• Fill out the new values in a New array
• Copy new to old at the end of the loop

6

Sequence-Alignment(m, n, x1x2...xm, y1y2...yn) {
 for i = 0 to m
 O[i] = i
 for i = 1 to m
 N[0]=i
 for j = 1 to n
 N[j] = min((xi=yj ? 0:1) + O[j-1],
 1 + O[j],
 1 + N[j-1])
 for j = 1 to n
 O[j]=N[j]
 return N[n]
}

M[i-1, j]
M[i, j-1]

M[i-1, j-1]

Lesson

Advantage of a bottom-up DP:

It is much easier to optimize the space.

7

Longest Path in a DAG

Longest Path in a DAG

Goal: Given a DAG G, find the longest path.

Recall: A directed graph G is a DAG if it has no cycle.

This problem is NP-hard for general
directed graphs:
- It has the Hamiltonian Path as a
 special case

9

2 3

6 5 4

7 1

DP for Longest Path in a DAG

Q: What is the right ordering?
Remember, we have to use that G is a DAG, ideally in
defining the ordering

We saw that every DAG has a topological sorting
So, let’s use that as an ordering.

10

2 3

6 5 4

7 1

1 2 3 4 5 6 7

DP for Longest Path in a DAG

Suppose we have labelled the vertices such that (𝑖, 𝑗) is a
directed edge only if 𝑖 < 𝑗.

Let 𝑂𝑃𝑇(𝑗) = length of the longest path ending at 𝑗
Suppose in the longest path ending at 𝑗, last edge is (𝑖, 𝑗).
Then, none of the 𝑖 + 1,… , 𝑗 − 1 are in this path since
topological ordering. Furthermore the path ending at i must
be the longest path ending at i,

𝑂𝑃𝑇 𝑗 = 𝑂𝑃𝑇 𝑖 + 1.
11

1 2 3 4 5 6 7

DP for Longest Path in a DAG

Suppose we have labelled the vertices such that (𝑖, 𝑗) is a
directed edge only if 𝑖 < 𝑗.

Let 𝑂𝑃𝑇(𝑗) = length of the longest path ending at 𝑗

 𝑂𝑃𝑇 𝑗 = 2
0	
1 + max

$: $,')*	+,-+
𝑂𝑃𝑇(𝑖)

12

If 𝑗 is a source
o.w.

DP for Longest Path in a DAG

13

Let G be a DAG given with a topological sorting: For all edges
(𝒊, 𝒋) we have i<j.

Compute-OPT(j){
 if (in-degree(j)==0)
 return 0
 if (M[j]==empty)
 M[j]=0;
 for all edges (i,j)
 M[j] = max(M[j],1+Compute-OPT(i))
 return M[j]
}
Output max(M[1],…,M[n])

Running Time: 𝑂 𝑛 +𝑚
Memory: 𝑂 𝑛
Can we output the longest path?

Outputting the Longest Path

14

Let G be a DAG given with a topological sorting: For all edges
(𝒊, 𝒋) we have i<j.
Initialize Parent[j]=-1 for all j.
Compute-OPT(j){
 if (in-degree(j)==0)
 return 0
 if (M[j]==empty)
 M[j]=0;
 for all edges (i,j)
 if (M[j] < 1+Compute-OPT(i))
 M[j]=1+Compute-OPT(i)
 Parent[j]=i
 return M[j]
}
Let M[k] be the maximum of M[1],…,M[n]
While (Parent[k]!=-1)
 Print k
 k=Parent[k]

Record the entry that
we used to compute OPT(j)

Longest Increasing Subsequence

Longest Increasing Subsequence

Given a sequence of numbers
Find the longest increasing subsequence

41, 22, 9, 15, 23, 39, 21, 56, 24, 34, 59, 23, 60, 39, 87, 23, 90

16

41, 22, 9, 15, 23, 39, 21, 56, 24, 34, 59, 23, 60, 39, 87, 23, 90

DP for LIS

Let OPT(j) be the longest increasing subsequence ending at j.

Observation: Suppose the OPT(j) is the sequence
𝑥!! , 𝑥!" , … , 𝑥!# , 𝑥"

Then, 𝑥!! , 𝑥!" , … , 𝑥!# is the longest increasing subsequence
ending at 𝑥!# ,	i.e., 𝑂𝑃𝑇 𝑗 = 1 + 𝑂𝑃𝑇(𝑖+)

 𝑂𝑃𝑇 𝑗 = 7
1	
1 + max

!:-$.-%
𝑂𝑃𝑇(𝑖)

Remark: This is a special case of Longest path in a DAG: Construct a
graph 1,…n where (𝑖, 𝑗) is an edge if 𝑖 < 𝑗 and 𝑥! < 𝑥". 17

If 𝑥" < 𝑥! for all 𝑖 < 𝑗
o.w.

Shortest Paths with Negative Edge
Weights

Shortest Paths with Neg Edge Weights

Given a weighted directed graph 𝐺 = 𝑉, 𝐸 and a source vertex
𝑠, where the weight of edge (u,v) is 𝑐/,0
Goal: Find the shortest path from s to all vertices of G.

19

s

1

3

4

2

2

3 -2

-1

source s

1

3

4

2

2

3 -2

-1

Impossibility on Graphs with Neg Cycles

Observation: No solution exists if G has a negative cycle.

This is because we can minimize the length by going over the
cycle again and again.

So, suppose G does not have a negative cycle.

20

s

1

3

4

2

2

3 -2

-1

DP for Shortest Path

Def: Let 𝑂𝑃𝑇(𝑣, 𝑖) be the length of the shortest 𝑠 - 𝑣 path with at
most 𝑖 edges.
Let us characterize 𝑂𝑃𝑇(𝑣, 𝑖).

Case 1: 𝑂𝑃𝑇(𝑣, 𝑖) path has less than 𝑖 edges.
• Then, 𝑂𝑃𝑇 𝑣, 𝑖 = 𝑂𝑃𝑇 𝑣, 𝑖 − 1 .

Case 2: 𝑂𝑃𝑇(𝑣, 𝑖) path has exactly 𝑖 edges.
• Let 𝑠, 𝑣#, 𝑣$, … , 𝑣!%#, 𝑣 be the 𝑂𝑃𝑇(𝑣, 𝑖)	path with 𝑖 edges.
• Then, 𝑠, 𝑣#, … , 𝑣!%# must be the shortest 𝑠 - 𝑣!%# path with at

most 𝑖 − 1 edges. So,
𝑂𝑃𝑇 𝑣, 𝑖 = 𝑂𝑃𝑇 𝑣!%#, 𝑖 − 1 + 𝑐0$&!,0

21

DP for Shortest Path

Def: Let 𝑂𝑃𝑇(𝑣, 𝑖) be the length of the shortest 𝑠 - 𝑣 path with at
most 𝑖 edges.

𝑂𝑃𝑇 𝑣, 𝑖 = B
0	 if	𝑣 = 𝑠	
∞	 if	𝑣 ≠ 𝑠, 𝑖 = 0	
min(𝑂𝑃𝑇 𝑣, 𝑖 − 1 , min

/: /,0 	23	4564
𝑂𝑃𝑇 𝑢, 𝑖 − 1 + 𝑐/,0)

So, for every v, 𝑂𝑃𝑇 𝑣, ? is the shortest path from s to v.
But how long do we have to run?
Since G has no negative cycle, it has at most 𝑛 − 1 edges. So,
𝑂𝑃𝑇(𝑣, 𝑛 − 1) is the answer.

22

Bellman Ford Algorithm

23

for v=1 to n
 if 𝒗 ≠ 𝒔 then
 M[v,0]=∞
M[s,0]=0.

for i=1 to n-1
 for v=1 to n
 M[v,i]=M[v,i-1]
 for every edge (u,v)
 M[v,i]=min(M[v,i], M[u,i-1]+cu,v)

Running Time: 𝑂 𝑛𝑚
Can we test if G has negative cycles?

Bellman Ford Algorithm

24

for v=1 to n
 if 𝒗 ≠ 𝒔 then
 M[v,0]=∞
M[s,0]=0.

for i=1 to n-1
 for v=1 to n
 M[v,i]=M[v,i-1]
 for every edge (u,v)
 M[v,i]=min(M[v,i], M[u,i-1]+cu,v)

Running Time: 𝑂 𝑛𝑚
Can we test if G has negative cycles?
Yes, run for i=1…2n and see if the M[v,n-1] is different from M[v,2n]

DP Techniques Summary

Recipe:
• Follow the natural induction proof.
• Find out additional assumptions/variables/subproblems that you

need to do the induction
• Strengthen the hypothesis and define w.r.t. new subproblems
Dynamic programming techniques.
• Whenever a problem is a special case of an NP-hard problem an

ordering is important:
• Adding a new variable: knapsack.
• Dynamic programming over intervals: RNA secondary structure.
Top-down vs. bottom-up:
• Different people have different intuitions
• Bottom-up is useful to optimize the memory

25

