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Sequence Alignment

Given two strings 𝑥!, … , 𝑥" and 𝑦!, … , 𝑦# find an alignment 
with minimum number of mismatch and gaps.

An alignment is a set of ordered pairs (𝑥!! , 𝑦"!), 𝑥!" , 𝑦"" , … such 
that 𝑖# < 𝑖$ < ⋯ and 𝑗# < 𝑗$ < ⋯

Example: CTACCG vs. TACATG.
Sol:  We aligned 
x2-y1, x3-y2, x4-y3, x5-y4, x6-y6.

So, the cost is 3. 
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DP for Sequence Alignment

Let 𝑂𝑃𝑇(𝑖, 𝑗) be min cost of aligning 𝑥#, … , 𝑥! and 𝑦#, … , 𝑦"

Case 1: OPT matches 𝑥! , 𝑦"
• Then, pay mis-match cost if 𝑥! ≠ 𝑦" + min cost of aligning 
𝑥#, … , 𝑥!%# and 𝑦#, … , 𝑦"%#  i.e., 𝑂𝑃𝑇(𝑖 − 1, 𝑗 − 1)

Case 2: OPT leaves 𝑥! unmatched
• Then, pay gap cost for 𝑥! + 𝑂𝑃𝑇 𝑖 − 1, 𝑗

Case 3: OPT leaves 𝑦" unmatched
• Then, pay gap cost for 𝑦" + 𝑂𝑃𝑇(𝑖, 𝑗 − 1)
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Bottom-up DP
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Sequence-Alignment(m, n, x1x2...xm, y1y2...yn) {
   for i = 0 to m
      M[0, i] = i
   for j = 0 to n
      M[j, 0] = j

   for i = 1 to m
      for j = 1 to n
         M[i, j] = min( (xi=yj ? 0:1) + M[i-1, j-1],
                       1 + M[i-1, j],
                       1 + M[i, j-1])
   return M[m, n]
}

Analysis: Θ(𝑚𝑛) time and space.
English words or sentences:  m, n  £ 10,..,20.
Computational biology:  m = n = 100,000. 10 billions ops OK, 
         but 40GB array?



Optimizing Memory

If we are not using strong induction in the DP, we just need to 
use the last (row) of computed values.
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Sequence-Alignment(m, n, x1x2...xm, y1y2...yn) {
   for i = 0 to m
      M[0, i] = i
   for j = 0 to n
      M[j, 0] = j

   for i = 1 to m
      for j = 1 to n
         M[i, j] = min( (xi=yj ? 0:1) + M[i-1, j-1],
                       1 + M[i-1, j],
                       1 + M[i, j-1])
   return M[m, n]
} Just need 𝑖 − 1, 𝑖 rows

to compute M[i,j]



DP with 𝑂(𝑚 + 𝑛) memory

• Keep an Old array containing values of the last row
• Fill out the new values in a New array
• Copy new to old at the end of the loop
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Sequence-Alignment(m, n, x1x2...xm, y1y2...yn) {
   for i = 0 to m
      O[i] = i
   for i = 1 to m
      N[0]=i
      for j = 1 to n
         N[j] = min( (xi=yj ? 0:1) + O[j-1],
                       1 + O[j],
                       1 + N[j-1])
      for j = 1 to n
         O[j]=N[j]
   return N[n]
}

M[i-1, j]
M[i, j-1]

M[i-1, j-1]



Lesson

Advantage of a bottom-up DP:

It is much easier to optimize the space.
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Longest Path in a DAG



Longest Path in a DAG

Goal: Given a DAG G, find the longest path.

Recall: A directed graph G is a DAG if it has no cycle.

This problem is NP-hard for general
directed graphs:
- It has the Hamiltonian Path as a 
     special case
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DP for Longest Path in a DAG

Q: What is the right ordering?
Remember, we have to use that G is a DAG, ideally in 
defining the ordering

We saw that every DAG has a topological sorting
So, let’s use that as an ordering.
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DP for Longest Path in a DAG

Suppose we have labelled the vertices such that (𝑖, 𝑗) is a 
directed edge only if 𝑖 < 𝑗.

Let 𝑂𝑃𝑇(𝑗) = length of the longest path ending at 𝑗
Suppose in the longest path ending at 𝑗, last edge is (𝑖, 𝑗). 
Then, none of the 𝑖 + 1,… , 𝑗 − 1 are in this path since 
topological ordering. Furthermore the path ending at i must 
be the longest path ending at i, 

𝑂𝑃𝑇 𝑗 = 𝑂𝑃𝑇 𝑖 + 1.
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DP for Longest Path in a DAG

Suppose we have labelled the vertices such that (𝑖, 𝑗) is a 
directed edge only if 𝑖 < 𝑗.

Let 𝑂𝑃𝑇(𝑗) = length of the longest path ending at 𝑗

        𝑂𝑃𝑇 𝑗 = 2
0	
1 + max

$: $,' 	)*	+,-+
𝑂𝑃𝑇(𝑖)
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If 𝑗 is a source
o.w.



DP for Longest Path in a DAG
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Let G be a DAG given with a topological sorting: For all edges 
(𝒊, 𝒋) we have i<j.

Compute-OPT(j){
   if (in-degree(j)==0)
     return 0
   if (M[j]==empty)
     M[j]=0;
     for all edges (i,j)
       M[j] = max(M[j],1+Compute-OPT(i))
   return M[j]
}
Output max(M[1],…,M[n])

Running Time: 𝑂 𝑛 +𝑚
Memory: 𝑂 𝑛
Can we output the longest path?



Outputting the Longest Path
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Let G be a DAG given with a topological sorting: For all edges 
(𝒊, 𝒋) we have i<j.
Initialize Parent[j]=-1 for all j.
Compute-OPT(j){
   if (in-degree(j)==0)
     return 0
   if (M[j]==empty)
     M[j]=0;
     for all edges (i,j)
       if (M[j] < 1+Compute-OPT(i))
         M[j]=1+Compute-OPT(i)
         Parent[j]=i
   return M[j]
}
Let M[k] be the maximum of M[1],…,M[n]
While (Parent[k]!=-1)
   Print k
   k=Parent[k]

Record the entry that 
we used to compute OPT(j)



Longest Increasing Subsequence



Longest Increasing Subsequence

Given a sequence of numbers 
Find the longest increasing subsequence

41, 22, 9, 15, 23, 39, 21, 56, 24, 34, 59, 23, 60, 39, 87, 23, 90
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41, 22, 9, 15, 23, 39, 21, 56, 24, 34, 59, 23, 60, 39, 87, 23, 90



DP for LIS

Let OPT(j) be the longest increasing subsequence ending at j.

Observation: Suppose the OPT(j) is the sequence
𝑥!! , 𝑥!" , … , 𝑥!# , 𝑥"

Then, 𝑥!! , 𝑥!" , … , 𝑥!# is the longest increasing subsequence 
ending at 𝑥!# ,	i.e.,  𝑂𝑃𝑇 𝑗 = 1 + 𝑂𝑃𝑇(𝑖+)

              𝑂𝑃𝑇 𝑗 = 7
1	
1 + max

!:-$.-%
𝑂𝑃𝑇(𝑖)

Remark: This is a special case of Longest path in a DAG: Construct a 
graph 1,…n where (𝑖, 𝑗) is an edge if 𝑖 < 𝑗 and 𝑥! < 𝑥". 17

If 𝑥" < 𝑥! for all 𝑖 < 𝑗
o.w.



Shortest Paths with Negative Edge 
Weights



Shortest Paths with Neg Edge Weights

Given a weighted directed graph 𝐺 = 𝑉, 𝐸  and a source vertex 
𝑠, where the weight of edge (u,v) is 𝑐/,0
Goal: Find the shortest path from s to all vertices of G.
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Impossibility on Graphs with Neg Cycles

Observation: No solution exists if G has a negative cycle.

This is because we can minimize the length by going over the 
cycle again and again. 

So, suppose G does not have a negative cycle. 

20

s

1

3

4

2

2

3 -2

-1



DP for Shortest Path

Def: Let 𝑂𝑃𝑇(𝑣, 𝑖) be the length of the shortest 𝑠 - 𝑣 path with at 
most 𝑖 edges.
Let us characterize 𝑂𝑃𝑇(𝑣, 𝑖).

Case 1: 𝑂𝑃𝑇(𝑣, 𝑖) path has less than 𝑖 edges.
• Then, 𝑂𝑃𝑇 𝑣, 𝑖 = 𝑂𝑃𝑇 𝑣, 𝑖 − 1 .

Case 2: 𝑂𝑃𝑇(𝑣, 𝑖) path has exactly 𝑖 edges.
• Let 𝑠, 𝑣#, 𝑣$, … , 𝑣!%#, 𝑣 be the 𝑂𝑃𝑇(𝑣, 𝑖)	path with 𝑖 edges.
• Then, 𝑠, 𝑣#, … , 𝑣!%# must be the shortest 𝑠 - 𝑣!%# path with at 

most 𝑖 − 1 edges. So, 
𝑂𝑃𝑇 𝑣, 𝑖 = 𝑂𝑃𝑇 𝑣!%#, 𝑖 − 1 + 𝑐0$&!,0
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DP for Shortest Path

Def: Let 𝑂𝑃𝑇(𝑣, 𝑖) be the length of the shortest 𝑠 - 𝑣 path with at 
most 𝑖 edges.

𝑂𝑃𝑇 𝑣, 𝑖 = B
0	 if	𝑣 = 𝑠	
∞	 if	𝑣 ≠ 𝑠, 𝑖 = 0	
min(𝑂𝑃𝑇 𝑣, 𝑖 − 1 , min

/: /,0 	23	4564
𝑂𝑃𝑇 𝑢, 𝑖 − 1 + 𝑐/,0)

So, for every v, 𝑂𝑃𝑇 𝑣, ?  is the shortest path from s to v.
But how long do we have to run?
Since G has no negative cycle, it has at most 𝑛 − 1 edges. So,
𝑂𝑃𝑇(𝑣, 𝑛 − 1) is the answer. 
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Bellman Ford Algorithm
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for v=1 to n
   if 𝒗 ≠ 𝒔 then
      M[v,0]=∞
M[s,0]=0.

for i=1 to n-1
   for v=1 to n
      M[v,i]=M[v,i-1]
      for every edge (u,v)
         M[v,i]=min(M[v,i], M[u,i-1]+cu,v)

Running Time: 𝑂 𝑛𝑚
Can we test if G has negative cycles? 



Bellman Ford Algorithm
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for v=1 to n
   if 𝒗 ≠ 𝒔 then
      M[v,0]=∞
M[s,0]=0.

for i=1 to n-1
   for v=1 to n
      M[v,i]=M[v,i-1]
      for every edge (u,v)
         M[v,i]=min(M[v,i], M[u,i-1]+cu,v)

Running Time: 𝑂 𝑛𝑚
Can we test if G has negative cycles? 
Yes, run for i=1…2n and see if the M[v,n-1] is different from M[v,2n] 



DP Techniques Summary

Recipe: 
• Follow the natural induction proof. 
• Find out additional assumptions/variables/subproblems that you 

need to do the induction
• Strengthen the hypothesis and define w.r.t. new subproblems
Dynamic programming techniques.
• Whenever a problem is a special case of an NP-hard problem an 

ordering is important: 
• Adding a new variable:  knapsack.
• Dynamic programming over intervals:  RNA secondary structure.
Top-down vs. bottom-up:  
• Different people have different intuitions 
• Bottom-up is useful to optimize the memory
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