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An Idea
Choose a number 𝑤 from 𝑥!, … , 𝑥"
Define
• 𝑆# 𝑤 = 𝑥$: 𝑥$ < 𝑤
• 𝑆% 𝑤 = 𝑥$: 𝑥$ = 𝑤
• 𝑆& 𝑤 = 𝑥$: 𝑥$ > 𝑤

Solve the problem recursively as follows:
• If 𝑘 ≤ |𝑆#(𝑤)|, output 𝑆𝑒𝑙(𝑆# 𝑤 , 𝑘)
• Else if 𝑘 ≤ 𝑆# 𝑤 + 𝑆% 𝑤 , output w
• Else output 𝑆𝑒𝑙(𝑆& 𝑤 , 𝑘 − |𝑆# 𝑤 | − |𝑆% 𝑤 |)

Ideally want 𝑆# 𝑤 , |𝑆&(𝑤)| ≤ 𝑛/2. In this case ALG runs in 
𝑂 𝑛 + 𝑂 "

' + 𝑂 "
( +⋯+ 𝑂 1 = 𝑂 𝑛 .

Can be computed in 
linear time



Partition into n/5 sets. Sort each set and set 𝑤 = 𝑆𝑒𝑙(𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡𝑠, 𝑛/10)

• 𝑆# 𝑤 ≥ 3 "
!) = *"

!)

• 𝑆& 𝑤 ≥ 3 "
!)

= *"
!)

𝑇 𝑛 = 𝑇
𝑛
5
+ 𝑇

7𝑛
10

+ 𝑂 𝑛 ⇒ 𝑇 𝑛 = 𝑂(𝑛)

An Improved Idea
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Median Algorithm
Sel(S, k) {
   𝒏 ← 𝑺
   If (n < ??) return ??
   Partition S into n/5 sets of size 5
   Sort each set of size 5 and let M be the set of medians, so 
|M|=n/5
   Let w=Sel(M,n/10)
   For i=1 to n{
     If 𝒙𝒊 < 𝒘 add x to 𝑺" 𝒘
     If 𝒙𝒊 > 𝒘 add x to 𝑺# 𝒘
     If 𝒙𝒊 = 𝒘 add x to 𝑺$(𝒘)
   }
   If (𝒌 ≤ |𝑺" 𝒘 |)
     return Sel(𝑺" 𝒘 ,𝒌)
   else if (𝒌 ≤ 𝑺" 𝒘 + |𝑺$ 𝒘 |)
     return w;
   else
     return Sel(𝑺# 𝒘 ,𝒌 − 𝑺" 𝒘 − |𝑺$(𝒘)|)
}

We can maintain each
set in an array 



Approximation Algorithms



Many of the important problems in real world are NP-
complete. 

    SAT, Set Cover, Graph Coloring, TSP, Max IND Set, 
Vertex Cover, …

So, we cannot find optimum solutions in polynomial time.
What to do instead?

• Find optimum solution of special cases (e.g., random 
inputs)

• Find near optimum solution in the worst case

How to deal with NP-complete Problem



Polynomial-time  Algorithms with a guaranteed 
approximation ratio.

𝛼 =
Cost	of	computed	solution
Cost	of	the	optimum

worst case over all instances. 

Goal: For each NP-hard problem find an approximation 
algorithm with the best possible approximation ratio.

Approximation Algorithm



Given a graph G=(V,E), Find smallest set of vertices 
touching every edge 

Vertex Cover



Greedy algorithms are typically used in practice to find a 
(good) solution to NP-hard problems

Strategy (1): Iteratively, include a vertex that covers most 
new edges

Q:Does this give an optimum solution?
A: No, 

Greedy Algorithm?



Greedy (1): Pick vertex that covers the most
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Greedy (1): Pick vertex that covers the most

𝐵!𝐵" 𝐵#
𝐵$

Greedy Vertex cover = 20
OPT Vertex cover = 8



Greedy (1): Pick vertex that covers the most

|𝐵%| = 𝑛/𝑖𝐵& 𝐵"𝐵&'"

𝑛 vertices. Each vertex has one edge into each 𝐵%

Greedy pick bottom vertices = 𝑛 + &
!
+ &

#
+⋯+ 1 ≈ 𝑛 ln 𝑛

OPT pick top vertices = n

Each vertex in 𝐵! has 𝑖 edges to top



Greedy 2: Iteratively, pick both endpoints of an uncovered 
edge.

A Different Greedy Rule

Vertex cover = 6



Greedy 2: Pick Both endpoints of an 
uncovered edge 

𝐵!𝐵" 𝐵#
𝐵$

Greedy vertex cover = 16

OPT vertex cover = 8



Thm: Size of greedy (2) vertex cover is at most twice as big 
as size of optimal cover

Pf: Suppose Greedy (2) picks endpoints of edges 𝑒!, … , 𝑒-.
Since these edges do not touch, every valid cover must pick 
one vertex from each of these edges! 
   i.e., 𝑂𝑃𝑇 ≥ 𝑘.

But the size of greedy cover is 2k. So, Greedy is a 2-
approximation.

Greedy (2) gives 2-approximation



Set Cover
Given a number of sets on a ground set of elements, 

Goal: choose minimum number of sets that cover all. 

   e.g., a company wants to hire employees with certain 
skills.   



Set Cover
Given a number of sets on a ground set of elements, 

Goal: choose minimum number of sets that cover all. 
Set cover = 4



A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered
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A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered

Thm: Greedy has ln n approximation ratio



A Tight Example for Greedy
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A Tight Example for Greedy

OPT = 2Greedy = 5



Thm: If the best solution has k sets, greedy finds at most k 
ln(n) sets.

Pf: Suppose OPT=k 
There is set that covers 1/k fraction of remaining elements, 
since there are k sets that cover all remaining elements. 
So in each step, algorithm will cover 1/k fraction of 
remaining elements.

#elements uncovered after t steps 

≤ 	𝑛 1 −
1
𝑘

𝑡 ≤ 𝑛𝑒.
/
-

So after 𝑡 = 𝑘 ln 𝑛 steps, # uncovered elements < 1.

Greedy Gives O(log(n)) approximation


