CSE 421

Divide and Conquer: Median Approximation Algorithms

Shayan Oveis Gharan

Integer Multiplication

Integer Arithmetic

Add: Given two n-bit integers
a and b, compute $a+b$.
Add

1	1	1	1	1	1	0	1,	
	1	1	0	1	0	1	0	1
+	0	1	1	1	1	1	0	1
1	0	1	0	1	0	0	1	0

$\mathrm{O}(\mathrm{n})$ bit operations.

Multiply: Given two n-bit integers a and b, compute $a \times b$. The "grade school" method:
$O\left(n^{2}\right)$ bit operations.

How to use Divide and Conquer?

Suppose we want to multiply two 2-digit integers $(32,45)$.
We can do this by multiplying four 1-digit integers
Then, use add/shift to obtain the result:

$$
\begin{aligned}
& x=10 x_{1}+x_{0} \\
& y=10 y_{1}+y_{0} \\
& x y=\left(10 x_{1}+x_{0}\right)\left(10 y_{1}+y_{0}\right) \\
& \quad=100 x_{1} y_{1}+10\left(x_{1} y_{0}+x_{0} y_{1}\right)+x_{0} y_{0}
\end{aligned}
$$

Same idea works when multiplying n-digit integers:

- Divide into 4 n/2-digit integers.
- Recursively multiply
- Then merge solutions

A Divide and Conquer for Integer Mult

Let x, y be two n -bit integers
Write $x=\underbrace{2^{n / 2} x_{1}}+x_{0}$ and $y=2^{n / 2} y_{1}+y_{0}$
where $\underbrace{}_{x_{0}, x_{1}, y_{0}}, y_{1}$ âre all $\mathrm{n} / 2$-bit integers.

Therefore,

$$
\begin{aligned}
& x=2^{n / 2} \cdot x_{1}+x_{0} \\
& y=2^{n / 2} \cdot y_{1}+y_{0} \\
& x y=\left(2^{n / 2} \cdot x_{1}+x_{0}\right)\left(2^{n / 2} \cdot y_{1}+y_{0}\right) \\
& \left.=2^{n} x_{1} y_{1}+2^{n / 2} \cdot x_{1} y_{0}+x_{0} y_{1}\right)+x_{0} y_{0} \\
& T(n)=4 T\left(\frac{n}{2}\right)+\Theta(n) \\
& \text { W(e gnly meed } 3 \text { values } \\
& x_{1} y_{1}, x_{0} y_{0}, x_{1} y_{0}+x_{0} y_{1} \\
& \text { Can we find all } 3 \text { by only } \\
& 3 \text { multiplication? }
\end{aligned}
$$

So,

$$
T(n)=\Theta\left(n^{2}\right) .
$$

Key Trick: 4 multiplies at the price of 3

$$
\begin{aligned}
& x=2^{n / 2} \cdot x_{1}+x_{0} \\
& y=2^{n / 2} \cdot y_{1}+y_{0} \\
& x y=\left(2^{n / 2} \cdot x_{1}+x_{0}\right)\left(2^{n / 2} \cdot y_{1}+y_{0}\right) \\
& \\
& \quad=2^{n} \cdot x_{1} y_{1}+2^{n / 2}\left(\left(x_{1} y_{0}+x_{0} y_{1}\right)+x_{0} y_{0}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \alpha=x_{1}+x_{0} \\
& \beta=y_{1}+y_{0} \\
& \alpha \beta=\left(x_{1}+x_{0}\right)\left(y_{1}+y_{0}\right) \\
& \quad=x_{1} y_{1}+\left(x_{1} y_{0}+x_{0} y_{1}\right)+x_{0} y_{0} \\
& \left(x_{1} y_{0}+x_{0} y_{1}\right)=\alpha \beta-x_{1} y_{1}-x_{0} y_{0}
\end{aligned}
$$

Key Trick: 4 multiplies at the price of 3

Theorem [Karatsuba-Ofman, 1962] Can multiply two n-digit integers in $\mathrm{O}\left(\mathrm{n}^{1.585 \ldots}\right)$ bit operations.

$$
\begin{aligned}
x & =2^{n / 2} \cdot x_{1}+x_{0} \Rightarrow \alpha=x_{1}+x_{0} \\
y & =2^{n / 2} \cdot y_{1}+y_{0} \Rightarrow \beta=y_{1}+y_{0} \\
x y & =\left(2^{n / 2} \cdot x_{1}+x_{0}\right)\left(2^{n / 2} \cdot y_{1}+y_{0}\right) \\
& =2^{n} \cdot x_{1} y_{1}+2^{n / 2} \cdot\left(x_{1} y_{0}+x_{0} y_{1}\right)+x_{0} y_{0} \\
\mathrm{~A} & \alpha \beta-A-B
\end{aligned}
$$

To multiply two n-bit integers:
Add two $\mathrm{n} / 2$ bit integers.
Multiply three $\mathrm{n} / 2$-bit integers.
Add, subtract, and shift $\mathrm{n} / 2$-bit integers to obtain result.

$$
T(n)=3 T\left(\frac{n}{2}\right)+O(n) \Rightarrow T(n)=O\left(n^{\log _{2} 3}\right)=O\left(n^{1.585 \ldots}\right)
$$

Integer Multiplication (Summary)

- Naïve: $\Theta\left(n^{2}\right)$
- Karatsuba: $\quad \Theta\left(n^{1.585 . . .}\right)$
- Amusing exercise: generalize Karatsuba to do 5 size $\mathrm{n} / 3$ subproblems
This gives $\Theta\left(n^{1.46 \ldots}\right)$ time algorithm
- Best known algorithm runs in $\Theta(n \log n)$ using fast Fourier transform
but mostly unused in practice (unless you need really big numbers - a billion digits of π, say)
- Best lower bound $O(n)$: A fundamental open problem

Median

Selecting k-th smallest

Problem: Given numbers x_{1}, \ldots, x_{n} and an integer $1 \leq k \leq n$ output the k-th smallest number

$$
\operatorname{Sel}\left(\left\{x_{1}, \ldots, x_{n}\right\}, k\right)
$$

A simple algorithm: Sort the numbers in time $O(n \log n)$ then return the k-th smallest in the array.

Can we do better?

Yes, in time $O(n)$ if $k=1$ or $k=2$.

Can we do $O(n)$ for all possible values of k ?

Assume all numbers are distinct for simplicity.

An Idea

Choose a number w from x_{1}, \ldots, x_{n}
Define

- $S_{<}(w)=\left\{x_{i}: x_{i}<w\right\}$
- $S_{=}(w)=\left\{x_{i}: x_{i}=w\right\}$

Can be computed in linear time

- $S_{>}(w)=\left\{x_{i}: x_{i}>w\right\}$

Solve the problem recursively as follows:

- If $k \leq\left|S_{<}(w)\right|$, output $\operatorname{Sel}\left(S_{<}(w), k\right)$
- Else if $k \leq\left|S_{<}(w)\right|+\left|S_{=}(w)\right|$, output w
- Else output $\operatorname{Sel}\left(S_{>}(w), k-\left|S_{<}(w)\right|-\left|S_{=}(w)\right|\right)$

Ideally want $\left|S_{<}(w)\right|,\left|S_{>}(w)\right| \leq n / 2$. In this case ALG runs in $O(n)+O\left(\frac{n}{2}\right)+O\left(\frac{n}{4}\right)+\cdots+O(1)=O(n)$.

How to choose w?

Suppose we choose w uniformly at random similar to the pivot in quicksort.
Then, $\mathbb{E}\left[\left|S_{<}(w)\right|\right]=\mathbb{E}\left[\left|S_{>}(w)\right|\right]=n / 2$. Algorithm runs in $O(n)$ in expectation.
Can we get $O(n)$ running time deterministically?

- Partition numbers into sets of size 3.
- \quad Sort each set (takes $O(\mathrm{n})$)
- $w=\operatorname{Sel}($ midpoints, $n / 6$)

VI	\bigcirc	\bigcirc	\bigcirc	\bigcirc	VI		VI	\bigcirc	\bigcirc	\bigcirc	VI	\bigcirc	V
\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc						
VI	VI	Vl	VI	VI	VI	VI	VI	Vl	VI	VI	VI	VI	Vl

How to lower bound $\left|S_{<}(w)\right|,\left|S_{>}(w)\right|$?

 $>w$
$<w$

- $\left|S_{<}(w)\right| \geq 2\left(\frac{n}{6}\right)=\frac{n}{3}$
- $\left|S_{>}(w)\right| \geq 2\left(\frac{n}{6}\right)=\frac{n}{3}$.

$$
\frac{n}{3} \leq\left|S_{<}(w)\right|,\left|S_{>}(w)\right| \leq \frac{2 n}{3}
$$

So, what is the running time?

Asymptotic Running Time?

- If $k \leq\left|S_{<}(w)\right|$, output $\operatorname{Sel}\left(S_{<}(w), k\right)$
- Else if $k \leq\left|S_{<}(w)\right|+\left|S_{=}(w)\right|$, output w
- Else output $\operatorname{Sel}\left(S_{>}(w), k-S_{<}(w)-S_{=}(w)\right)$

O(nlog n) again?
So, what is the point?

Where $\frac{n}{3} \leq\left|S_{<}(w)\right|,\left|S_{>}(w)\right| \leq \frac{2 n}{3}$

$$
T(n)=T\left(\frac{n}{3}\right)+T\left(\frac{2 n}{3}\right)+O(n) \Rightarrow T(n)=O(n \log n)
$$

An Improved Idea

Partition into $\mathrm{n} / 5$ sets. Sort each set and set $w=\operatorname{Sel}($ midpoints, $n / 10)$

- $\left|S_{<}(w)\right| \geq 3\left(\frac{n}{10}\right)=\frac{3 n}{10}$
- $\left|S_{>}(w)\right| \geq 3\left(\frac{n}{10}\right)=\frac{3 n}{10}$

$$
\frac{3 n}{10} \leq\left|S_{<}(w)\right|,\left|S_{>}(w)\right| \leq \frac{7 n}{10}
$$

$$
T(n)=T\left(\frac{n}{5}\right)+T\left(\frac{7 n}{10}\right)+O(n) \Rightarrow T(n)=O(n)
$$

An Improved Idea

```
Sel(S, k) {
    n}\leftarrow||
    If (n < ??) return ??
    Partition S into n/5 sets of size 5
    Sort each set of size 5 and let M be the set of medians, so
|M|=n/5
    Let w=Sel (M,n/10)}
    For i=1 to n{
        If }\mp@subsup{x}{i}{}<w\mathrm{ add x to }\mp@subsup{S}{<}{}(w
        If }\mp@subsup{x}{i}{}>w\mathrm{ add x to }\mp@subsup{S}{>}{}(w
        If }\mp@subsup{x}{i}{}=w\mathrm{ add x to }\mp@subsup{S}{=}{\prime}(w
    }
    If (k\leq|S<< (w)|)
        return Sel (S
    else if (k\leq | S<< w)|+|S=(w)|)
        return w;
    else
        return Sel (S>(w),k-|\mp@subsup{S}{<}{}(w)|-|\mp@subsup{S}{=}{}(w)|)
}
```


D\&C Summary

Idea:
"Two halves are better than a whole"

- if the base algorithm has super-linear complexity.
"If a little's good, then more's better"
- repeat above, recursively
- Applications: Many.
- Binary Search, Merge Sort, (Quicksort),
- Root of a Function
- Closest points,
- Integer multiplication
- Median

Approximation Algorithms

How to deal with NP-complete Problem

Many of the important problems in real world are NPcomplete.
SAT, Set Cover, Graph Coloring, TSP, Max IND Set, Vertex Cover, ...

So, we cannot find optimum solutions in polynomial time. What to do instead?

- Find optimum solution of special cases (e.g., random inputs)
- Find near optimum solution in the worst case

Approximation Algorithm

Polynomial-time Algorithms with a guaranteed approximation ratio.

$$
\alpha=\frac{\text { Cost of computed solution }}{\text { Cost of the optimum }}
$$

worst case over all instances.

Goal: For each NP-hard problem find an approximation algorithm with the best possible approximation ratio.

Vertex Cover

Given a graph $G=(V, E)$, Find smallest set of vertices touching every edge

Greedy Algorithm?

Greedy algorithms are typically used in practice to find a (good) solution to NP-hard problems

Strategy (1): Iteratively, include a vertex that covers most new edges

Q:Does this give an optimum solution?
A: No,

Greedy (1): Pick vertex that covers the most

Greedy (1): Pick vertex that covers the most

Greedy (1): Pick vertex that covers the most

Greedy Vertex cover = 20
OPT Vertex cover = 8

Greedy (1): Pick vertex that covers the most

n vertices. Each vertex has one edge into each B_{i}

Each vertex in B_{i} has i edges to top

Greedy pick bottom vertices $=n+\frac{n}{2}+\frac{n}{3}+\cdots+1 \approx n \ln n$
OPT pick top vertices $=\mathrm{n}$

A Different Greedy Rule

Greedy 2: Iteratively, pick both endpoints of an uncovered edge.

Vertex cover $=6$

Greedy 2: Pick Both endpoints of an uncovered edge

Greedy vertex cover $=16$

Greedy (2) gives 2-approximation

Thm: Size of greedy (2) vertex cover is at most twice as big as size of optimal cover

Pf: Suppose Greedy (2) picks endpoints of edges e_{1}, \ldots, e_{k}. Since these edges do not touch, every valid cover must pick one vertex from each of these edges!

$$
\text { i.e., } O P T \geq k \text {. }
$$

But the size of greedy cover is 2 k . So, Greedy is a 2 approximation.

