
CSE 421

Divide and Conquer: Median
Approximation Algorithms

Shayan Oveis Gharan

1

Integer Multiplication

Integer Arithmetic
Add: Given two n-bit integers
a and b, compute a + b.

Multiply: Given two n-bit
integers a and b, compute a × b.
The “grade school” method:

3

1

011 1

110 1+

010 1

111

010 1

011 1

100 0

10111

Add

1

1

0

0

1

1

1

0

0

1

1

1

1

0

0

1

1

1

1

0

1

0

1

0000000

1010101

1010101

1010101

1010101

1010101

100000000001011

1

0

1

1

1

1

1

0

*

Multiply

00000000

O(n) bit operations.

𝑂(𝑛!) bit operations.

How to use Divide and Conquer?
Suppose we want to multiply two 2-digit integers (32,45).
We can do this by multiplying four 1-digit integers
Then, use add/shift to obtain the result:

Same idea works when multiplying n-digit integers:
• Divide into 4 n/2-digit integers.
• Recursively multiply
• Then merge solutions

5

2

4

3

0441

01

80

51

21

x0×y0

x0×y1

x1×y0

x1×y1

x1 x0

y1 y0

𝑥 = 10𝑥! + 𝑥"
 𝑦 = 10𝑦! + 𝑦"
 𝑥𝑦 = 10𝑥! + 𝑥" 10𝑦! + 𝑦"
 = 100	𝑥!𝑦! + 10 𝑥!𝑦" + 𝑥"𝑦! + 𝑥"𝑦"

A Divide and Conquer for Integer Mult
Let 𝑥, 𝑦 be two n-bit integers
Write 𝑥 = 2!/#𝑥$ + 𝑥% and 𝑦 = 2!/#𝑦$ + 𝑦%
 where 𝑥%, 𝑥$, 𝑦%, 𝑦$ are all n/2-bit integers.

Therefore,
𝑇 𝑛 = 4𝑇

𝑛
2
+ Θ(𝑛)

So,
𝑇 𝑛 = Θ 𝑛# .

𝑥 = 2#/% ⋅ 𝑥! + 𝑥"
 𝑦 = 2#/% ⋅ 𝑦! + 𝑦"
 𝑥𝑦 = 2#/% ⋅ 𝑥! +𝑥" 2#/% ⋅ 𝑦! + 𝑦"
 = 2# ⋅ 𝑥!𝑦! + 2 ⁄# % ⋅ 𝑥!𝑦" + 𝑥"𝑦! + 𝑥"𝑦"

We only need 3 values
𝑥!𝑦!, 𝑥"𝑦", 𝑥!𝑦" + 𝑥"𝑦!

Can we find all 3 by only
 3 multiplication?

Key Trick: 4 multiplies at the price of 3

𝑥 = 2#/% ⋅ 𝑥! + 𝑥"
 𝑦 = 2#/% ⋅ 𝑦! + 𝑦"
 𝑥𝑦 = 2#/% ⋅ 𝑥! +𝑥" 2#/% ⋅ 𝑦! + 𝑦"
 = 2# ⋅ 𝑥!𝑦! + 2 ⁄# % ⋅ 𝑥!𝑦" + 𝑥"𝑦! + 𝑥"𝑦"

𝛼 = 𝑥! + 𝑥"
 𝛽 = 𝑦! + 𝑦"
 𝛼𝛽 = 𝑥! + 𝑥" 𝑦! + 𝑦"
 = 𝑥!𝑦! + 𝑥!𝑦" + 𝑥"𝑦! + 𝑥"𝑦"
𝑥!𝑦" + 𝑥"𝑦! = 𝛼𝛽 − 𝑥!𝑦! − 𝑥"𝑦"

Key Trick: 4 multiplies at the price of 3
Theorem [Karatsuba-Ofman, 1962] Can multiply two n-digit
integers in O(n1.585…) bit operations.

To multiply two n-bit integers:
Add two n/2 bit integers.
Multiply three n/2-bit integers.
Add, subtract, and shift n/2-bit integers to obtain result.

𝑇 𝑛 = 3𝑇
𝑛
2
+ 𝑂 𝑛 ⇒ 𝑇 𝑛 = 𝑂 𝑛*+,! - = 𝑂(𝑛$./0/…)

𝑥 = 2#/% ⋅ 𝑥! + 𝑥" ⇒ 𝛼 = 𝑥! + 𝑥"
 𝑦 = 2#/% ⋅ 𝑦! + 𝑦" ⇒ 𝛽 = 𝑦! + 𝑦"
 𝑥𝑦 = 2#/% ⋅ 𝑥! +𝑥" 2#/% ⋅ 𝑦! + 𝑦"
 = 2# ⋅ 𝑥!𝑦! + 2 ⁄# % ⋅ 𝑥!𝑦" + 𝑥"𝑦! + 𝑥"𝑦"

A B𝛼𝛽 − 𝐴 − 𝐵

Integer Multiplication (Summary)
• Naïve: Θ(𝑛2)

• Karatsuba: Θ(𝑛$./0/…)

• Amusing exercise: generalize Karatsuba to do 5 size
n/3 subproblems

This gives Θ 𝑛".$%… time algorithm

• Best known algorithm runs in Θ(𝑛 log 𝑛) using fast Fourier
transform
but mostly unused in practice (unless you need really big numbers - a

billion digits of p, say)

• Best lower bound 𝑂(𝑛): A fundamental open problem

Median

Selecting k-th smallest
Problem: Given numbers 𝑥$, … , 𝑥! and an integer 1 ≤ 𝑘 ≤ 𝑛

output the 𝑘-th smallest number
Sel(𝑥$, … , 𝑥! , 𝑘)

A simple algorithm: Sort the numbers in time O(n log n) then
return the k-th smallest in the array.

Can we do better?

Yes, in time 𝑂(𝑛) if 𝑘 = 1 or 𝑘 = 2.

Can we do 𝑂 𝑛 for all possible values of k?

Assume all numbers are distinct for simplicity.

An Idea
Choose a number 𝑤 from 𝑥$, … , 𝑥!
Define
• 𝑆2 𝑤 = 𝑥3: 𝑥3 < 𝑤
• 𝑆4 𝑤 = 𝑥3: 𝑥3 = 𝑤
• 𝑆5 𝑤 = 𝑥3: 𝑥3 > 𝑤

Solve the problem recursively as follows:
• If 𝑘 ≤ |𝑆2(𝑤)|, output 𝑆𝑒𝑙(𝑆2 𝑤 , 𝑘)
• Else if 𝑘 ≤ 𝑆2 𝑤 + 𝑆4 𝑤 , output w
• Else output 𝑆𝑒𝑙(𝑆5 𝑤 , 𝑘 − |𝑆2 𝑤 | − |𝑆4 𝑤 |)

Ideally want 𝑆2 𝑤 , |𝑆5(𝑤)| ≤ 𝑛/2. In this case ALG runs in
𝑂 𝑛 + 𝑂 !

+ 𝑂 !
6 +⋯+ 𝑂 1 = 𝑂 𝑛 .

Can be computed in
linear time

How to choose w?
Suppose we choose w uniformly at random
 similar to the pivot in quicksort.
Then, 𝔼 𝑆' 𝑤 = 𝔼 𝑆(𝑤 = 𝑛/2. Algorithm runs in 𝑂(𝑛) in

expectation.
Can we get 𝑂(𝑛) running time deterministically?
• Partition numbers into sets of size 3.
• Sort each set (takes O(n))
• 𝑤 = 𝑆𝑒𝑙(𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡𝑠, 𝑛/6)

≤
≤

≤
≤

≤
≤

≤
≤

≤
≤

≤
≤

≤
≤

≤
≤

≤
≤

≤
≤

≤
≤

≤
≤

≤
≤

≤
≤w

• 𝑆2 𝑤 ≥ 2 !
7 = !

-

• 𝑆5 𝑤 ≥ 2 !
7 = !

- .

So, what is the running time?

How to lower bound 𝑆! 𝑤 , |𝑆" 𝑤 |?

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

≤
<w< <<<< < < < < <

< 𝒘

> 𝒘

𝑛
3 ≤ |𝑆(𝑤 |, 𝑆) 𝑤 ≤

2𝑛
3

• If 𝑘 ≤ |𝑆'(𝑤)|, output 𝑆𝑒𝑙(𝑆' 𝑤 , 𝑘)
• Else if 𝑘 ≤ 𝑆' 𝑤 + 𝑆) 𝑤 , output w
• Else output 𝑆𝑒𝑙(𝑆(𝑤 , 𝑘 − 𝑆' 𝑤 − 𝑆) 𝑤)

Where *
+
≤ 𝑆' 𝑤 , 𝑆(𝑤 ≤ !*

+

𝑇 𝑛 = 𝑇
𝑛
3
+ 𝑇

2𝑛
3

+ 𝑂 𝑛 ⇒ 𝑇 𝑛 = 𝑂(𝑛	log	𝑛)

Asymptotic Running Time?

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

≤
<w

< <<<< < < < < <

O(nlog n) again?
So, what is the point?

Partition into n/5 sets. Sort each set and set 𝑤 = 𝑆𝑒𝑙(𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡𝑠, 𝑛/10)

• 𝑆2 𝑤 ≥ 3 !
$% = -!

$%

• 𝑆5 𝑤 ≥ 3 !
$%

= -!
$%

𝑇 𝑛 = 𝑇
𝑛
5
+ 𝑇

7𝑛
10

+ 𝑂 𝑛 ⇒ 𝑇 𝑛 = 𝑂(𝑛)

An Improved Idea

< <<<< < < < < <

< 𝒘

> 𝒘

3𝑛
10 ≤ |𝑆(𝑤 |, 𝑆) 𝑤 ≤

7𝑛
10

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

An Improved Idea
Sel(S, k) {
 𝒏 ← 𝑺
 If (n < ??) return ??
 Partition S into n/5 sets of size 5
 Sort each set of size 5 and let M be the set of medians, so
|M|=n/5
 Let w=Sel(M,n/10)
 For i=1 to n{
 If 𝒙𝒊 < 𝒘 add x to 𝑺" 𝒘
 If 𝒙𝒊 > 𝒘 add x to 𝑺# 𝒘
 If 𝒙𝒊 = 𝒘 add x to 𝑺$(𝒘)
 }
 If (𝒌 ≤ |𝑺" 𝒘 |)
 return Sel(𝑺" 𝒘 ,𝒌)
 else if (𝒌 ≤ 𝑺" 𝒘 + |𝑺$ 𝒘 |)
 return w;
 else
 return Sel(𝑺# 𝒘 ,𝒌 − 𝑺" 𝒘 − |𝑺$(𝒘)|)
}

We can maintain each
set in an array

D&C Summary
Idea:

“Two halves are better than a whole”
• if the base algorithm has super-linear complexity.

“If a little's good, then more's better”
• repeat above, recursively

• Applications: Many.
• Binary Search, Merge Sort, (Quicksort),
• Root of a Function
• Closest points,
• Integer multiplication
• Median

Approximation Algorithms

Many of the important problems in real world are NP-
complete.

 SAT, Set Cover, Graph Coloring, TSP, Max IND Set,
Vertex Cover, …

So, we cannot find optimum solutions in polynomial time.
What to do instead?

• Find optimum solution of special cases (e.g., random
inputs)

• Find near optimum solution in the worst case

How to deal with NP-complete Problem

Polynomial-time Algorithms with a guaranteed
approximation ratio.

𝛼 =
Cost	of	computed	solution
Cost	of	the	optimum

worst case over all instances.

Goal: For each NP-hard problem find an approximation
algorithm with the best possible approximation ratio.

Approximation Algorithm

Given a graph G=(V,E), Find smallest set of vertices
touching every edge

Vertex Cover

Greedy algorithms are typically used in practice to find a
(good) solution to NP-hard problems

Strategy (1): Iteratively, include a vertex that covers most
new edges

Q:Does this give an optimum solution?
A: No,

Greedy Algorithm?

Greedy (1): Pick vertex that covers the most

𝐵!𝐵" 𝐵+
𝐵$

Greedy (1): Pick vertex that covers the most

𝐵!𝐵" 𝐵+
𝐵$

Greedy (1): Pick vertex that covers the most

𝐵!𝐵" 𝐵+
𝐵$

Greedy (1): Pick vertex that covers the most

𝐵!𝐵" 𝐵+
𝐵$

Greedy (1): Pick vertex that covers the most

𝐵!𝐵" 𝐵+
𝐵$

Greedy (1): Pick vertex that covers the most

𝐵!𝐵" 𝐵+
𝐵$

Greedy (1): Pick vertex that covers the most

𝐵!𝐵" 𝐵+
𝐵$

Greedy (1): Pick vertex that covers the most

𝐵!𝐵" 𝐵+
𝐵$

Greedy (1): Pick vertex that covers the most

𝐵!𝐵" 𝐵+
𝐵$

Greedy (1): Pick vertex that covers the most

𝐵!𝐵" 𝐵+
𝐵$

Greedy Vertex cover = 20
OPT Vertex cover = 8

Greedy (1): Pick vertex that covers the most

|𝐵,| = 𝑛/𝑖𝐵* 𝐵"𝐵*-"

𝑛 vertices. Each vertex has one edge into each 𝐵,

Greedy pick bottom vertices = 𝑛 + *
!
+ *

+
+⋯+ 1 ≈ 𝑛 ln 𝑛

OPT pick top vertices = n

Each vertex in 𝐵# has 𝑖 edges to top

Greedy 2: Iteratively, pick both endpoints of an uncovered
edge.

A Different Greedy Rule

Vertex cover = 6

Greedy 2: Pick Both endpoints of an
uncovered edge

𝐵!𝐵" 𝐵+
𝐵$

Greedy vertex cover = 16

OPT vertex cover = 8

Thm: Size of greedy (2) vertex cover is at most twice as big
as size of optimal cover

Pf: Suppose Greedy (2) picks endpoints of edges 𝑒$, … , 𝑒:.
Since these edges do not touch, every valid cover must pick
one vertex from each of these edges!
 i.e., 𝑂𝑃𝑇 ≥ 𝑘.

But the size of greedy cover is 2k. So, Greedy is a 2-
approximation.

Greedy (2) gives 2-approximation

