CSE 421

Divide and Conquer: Finding Root Closest Pair of Points

Shayan Oveis Gharan
Finding the Closest Pair of Points
A Divide and Conquer Algorithm

Divide: draw vertical line L with $\approx \frac{n}{2}$ points on each side.
Conquer: find closest pair on each side, recursively.
Combine to find closest pair overall
Return best solutions

$\seemslike \Theta(n^2)$?
Key Observation

Suppose δ is the minimum distance of all pairs in left/right of L.

$$\delta = \min(12,21) = 12.$$

Key Observation: suffices to consider points within δ of line L.

Almost the one-D problem again: Sort points in 2δ-strip by their y coordinate.

Only check pts within 11 in sorted list!
Almost 1D Problem

Partition each side of L into $\frac{\delta}{2} \times \frac{\delta}{2}$ squares

Claim: No two points lie in the same $\frac{\delta}{2} \times \frac{\delta}{2}$ box.

Pf: Such points would be within

$$\sqrt{\left(\frac{\delta}{2}\right)^2 + \left(\frac{\delta}{2}\right)^2} = \delta \sqrt{\frac{1}{2}} \approx 0.7\delta < \delta$$

Let s_i have the i^{th} smallest y-coordinate among points in the 2δ-width-strip.

Claim: If $|i - j| > 11$, then the distance between s_i and s_j is $> \delta$.

Pf: only 11 boxes within δ of $y(s_i)$.
Recap: Finding Closest Pair

Point 42 has distance at least 2δ from point 30.

At most 11 points ahead of 30 have distance $< \delta$ from it.

So, enough to check distance Distance of 30 to 19…41.
Closest Pair (2Dim Algorithm)

Closest-Pair(p_1, \ldots, p_n) {
 if(n <= ??) return ??

 Compute separation line L such that half the points are on one side and half on the other side.

 $\delta_1 = \text{Closest-Pair(left half)}$
 $\delta_2 = \text{Closest-Pair(right half)}$
 $\delta = \min(\delta_1, \delta_2)$

 Delete all points further than δ from separation line L

 Sort remaining points $p[1] \ldots p[m]$ by y-coordinate.

 for $i = 1 \ldots m$
 for $k = 1 \ldots 11$
 if $i+k <= m$
 $\delta = \min(\delta, \text{distance}(p[i], p[i+k]));$

 return δ.}
Closest Pair Analysis I

Let $D(n)$ be the number of pairwise distance calculations in the Closest-Pair Algorithm when run on $n \geq 1$ points

$$D(n) \leq \begin{cases} 1 & \text{if } n = 1 \\ 2D \left(\frac{n}{2} \right) + 11n & \text{o.w.} \end{cases} \Rightarrow D(n) = \Theta(n \log n)$$

BUT, that’s only the number of distance calculations

What if we counted running time?

$$T(n) \leq \begin{cases} 1 & \text{if } n = 1 \\ 2T \left(\frac{n}{2} \right) + O(n \log n) & \text{o.w.} \end{cases} \Rightarrow D(n) = \Theta(n \log^2 n)$$
Can we do better? (Analysis II)

Yes!!

Don’t sort by y-coordinates each time.
Sort by x at top level only.

This is enough to divide into two equal subproblems in O(n)
Each recursive call returns δ and list of all points sorted by y
Sort points by y-coordinate by merging two pre-sorted lists.

\[T(n) \leq \begin{cases}
1 & \text{if } n = 1 \\
2T\left(\frac{n}{2}\right) + O(n) & \text{o.w.}
\end{cases} \quad \Rightarrow D(n) = \Theta(n \log n) \]
Master Theorem

Suppose \(T(n) = a \, T \left(\frac{n}{b} \right) + cn^k \) for all \(n > b \). Then,

- If \(a > b^k \) then \(T(n) = \Theta(n^{\log_b a}) \)
- If \(a < b^k \) then \(T(n) = \Theta(n^k) \)
- If \(a = b^k \) then \(T(n) = \Theta(n^k \log n) \)

Works even if it is \(\left\lfloor \frac{n}{b} \right\rfloor \) instead of \(\frac{n}{b} \).

We also need \(a \geq 1, b > 1, k \geq 0 \) and \(T(n) = O(1) \) for \(n \leq b \).
Master Theorem

Suppose $T(n) = a \cdot T\left(\frac{n}{b}\right) + cn^k$ for all $n > b$. Then,

- If $a > b^k$ then $T(n) = \Theta(n^{\log_b a})$
- If $a < b^k$ then $T(n) = \Theta(n^k)$
- If $a = b^k$ then $T(n) = \Theta(n^k \log n)$

Example: For mergesort algorithm we have

$$T(n) = 2T\left(\frac{n}{2}\right) + O(n).$$

So, $k = 1, a = b^k$ and $T(n) = \Theta(n \log n)$
Proving Master Theorem

Problem size

\[T(n) = aT\left(\frac{n}{b}\right) + cn^k \]

probs

\[\begin{array}{c|c}
1 & cn^k \\
a & c \cdot a \cdot n^k/b^k \\
a^2 & c \cdot a^2 \cdot n^k/b^{2k} = c \cdot n^k(a/b^k)^2 \\
a^d & c \cdot n^k(a/b^k)^d \\
\end{array} \]

\[T(n) = cn^k \sum_{i=0}^{d=\log_b n} \left(\frac{a}{b^k} \right)^i \]
A Useful Identity

Theorem: \(1 + x + x^2 + \cdots + x^d = \frac{x^{d+1} - 1}{x - 1} \)

\textbf{Pf:} Let \(S = 1 + x + x^2 + \cdots + x^d \)

Then, \(xS = x + x^2 + \cdots + x^{d+1} \)

So, \(xS - S = x^{d+1} - 1 \)
i.e., \(S(x - 1) = x^{d+1} - 1 \)
Therefore,

\[S = \frac{x^{d+1} - 1}{x - 1} \]
Solve: \(T(n) = aT\left(\frac{n}{b}\right) + cn^k, \ a > b^k \)

\[
T(n) = cn^k \sum_{i=0}^{\log_b n} \left(\frac{a}{b^k} \right)^i
= cn^k \frac{\left(\frac{a}{b^k} \right)^{\log_b n+1} - 1}{\left(\frac{a}{b^k} \right) - 1}
\]

\(b^k \log_b n \)
\[
= (b^{\log_b n})^k
= n^k
\]

\[
\leq c \left(\frac{n^k}{b^k \log_b n} \right) \frac{\left(\frac{a}{b^k} \right)}{\left(\frac{a}{b^k} \right) - 1} a^{\log_b n}
\]

\[
\leq 2c a^{\log_b n} = O(n^{\log_b a})
\]

\[
x^{d+1-1} \quad \text{for} \quad x = \frac{a}{b^k} \\
\quad d = \log_b n \\
\quad \text{using} \quad x \neq 1
\]
Solve: \(T(n) = a T \left(\frac{n}{b} \right) + cn^k, \quad a = b^k \)

\[
T(n) = cn^k \sum_{i=0}^{\log_b n} \left(\frac{a}{b^k} \right)^i = cn^k \log_b n
\]
Master Theorem

Suppose $T(n) = a \, T\left(\frac{n}{b}\right) + cn^k$ for all $n > b$. Then,

- If $a > b^k$ then $T(n) = \Theta(n^{\log_b a})$

- If $a < b^k$ then $T(n) = \Theta(n^k)$

- If $a = b^k$ then $T(n) = \Theta(n^k \log n)$

Works even if it is $\left\lfloor \frac{n}{b} \right\rfloor$ instead of $\frac{n}{b}$.

We also need $a \geq 1, b > 1, k \geq 0$ and $T(n) = O(1)$ for $n \leq b$.

Integer Multiplication
Add: Given two n-bit integers \(a \) and \(b \), compute \(a + b \).

\[\begin{array}{ccccccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\
+ & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\
\hline
1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0
\end{array} \]

\(O(n) \) bit operations.

Multiply: Given two n-bit integers \(a \) and \(b \), compute \(a \times b \).

The “grade school” method:

\(O(n^2) \) bit operations.
How to use Divide and Conquer?

Suppose we want to multiply two 2-digit integers (32, 45). We can do this by multiplying four 1-digit integers. Then, use add/shift to obtain the result:

\[x = 10x_1 + x_0\]
\[y = 10y_1 + y_0\]
\[xy = (10x_1 + x_0)(10y_1 + y_0) = 100x_1y_1 + 10(x_1y_0 + x_0y_1) + x_0y_0\]

Same idea works when multiplying n-digit integers:

• Divide into 4 n/2-digit integers.
• Recursively multiply
• Then merge solutions
A Divide and Conquer for Integer Mult

Let \(x, y \) be two \(n \)-bit integers

Write \(x = 2^{n/2} x_1 + x_0 \) and \(y = 2^{n/2} y_1 + y_0 \)

where \(x_0, x_1, y_0, y_1 \) are all \(n/2 \)-bit integers.

\[
x = 2^{n/2} \cdot x_1 + x_0 \\
y = 2^{n/2} \cdot y_1 + y_0 \\
x y = (2^{n/2} \cdot x_1 + x_0)(2^{n/2} \cdot y_1 + y_0) \\
= 2^n \cdot x_1 y_1 + 2^{n/2} \cdot (x_1 y_0 + x_0 y_1) + x_0 y_0
\]

Therefore,

\[
T(n) = 4T \left(\frac{n}{2} \right) + \Theta(n)
\]

So,

\[
T(n) = \Theta(n^2).
\]

We only need 3 values \(x_1 y_1, x_0 y_0, x_1 y_0 + x_0 y_1 \)
Can we find all 3 by only 3 multiplication?
Key Trick: 4 multiplies at the price of 3

\[x = 2^{n/2} \cdot x_1 + x_0 \]
\[y = 2^{n/2} \cdot y_1 + y_0 \]
\[xy = (2^{n/2} \cdot x_1 + x_0)(2^{n/2} \cdot y_1 + y_0) = 2^n \cdot x_1y_1 + 2^{n/2}(x_1y_0 + x_0y_1) + x_0y_0 \]

\[\alpha = x_1 + x_0 \]
\[\beta = y_1 + y_0 \]
\[\alpha\beta = (x_1 + x_0)(y_1 + y_0) = x_1y_1 + (x_1y_0 + x_0y_1) + x_0y_0 \]
\[(x_1y_0 + x_0y_1) = \alpha\beta - x_1y_1 - x_0y_0 \]
Key Trick: 4 multiplies at the price of 3

Theorem [Karatsuba-Ofman, 1962] Can multiply two n-digit integers in \(O(n^{1.585\ldots})\) bit operations.

\[
x = 2^{n/2} \cdot x_1 + x_0 \Rightarrow \alpha = x_1 + x_0
\]
\[
y = 2^{n/2} \cdot y_1 + y_0 \Rightarrow \beta = y_1 + y_0
\]
\[
xy = (2^{n/2} \cdot x_1 + x_0)(2^{n/2} \cdot y_1 + y_0)
\]
\[
= 2^n \cdot x_1y_1 + 2^{n/2} \cdot (x_1y_0 + x_0y_1) + x_0y_0
\]
\[
A \quad \alpha\beta - A - B \quad B
\]

To multiply two n-bit integers:

Add two n/2 bit integers.

Multiply three n/2-bit integers.

Add, subtract, and shift n/2-bit integers to obtain result.

\[
T(n) = 3T\left(\frac{n}{2}\right) + O(n) \Rightarrow T(n) = O\left(n^{\log_2 3}\right) = O(n^{1.585\ldots})
\]
Integer Multiplication (Summary)

• Naïve: $\Theta(n^2)$

• Karatsuba: $\Theta(n^{1.585\ldots})$

• Amusing exercise: generalize Karatsuba to do 5 size $n/3$ subproblems
 This gives $\Theta(n^{1.46\ldots})$ time algorithm

• Best known algorithm runs in $\Theta(n \log n)$ using fast Fourier transform
 but mostly unused in practice (unless you need really big numbers - a billion digits of π, say)

• Best lower bound $O(n)$: A fundamental open problem
Median
Selecting k-th smallest

Problem: Given numbers x_1, \ldots, x_n and an integer $1 \leq k \leq n$
output the k-th smallest number
$\text{Sel}(\{x_1, \ldots, x_n\}, k)$

A simple algorithm: Sort the numbers in time $O(n \log n)$ then
return the k-th smallest in the array.

Can we do better?

Yes, in time $O(n)$ if $k = 1$ or $k = 2$.

Can we do $O(n)$ for all possible values of k?

Assume all numbers are distinct for simplicity.
An Idea

Choose a number \(w \) from \(x_1, \ldots, x_n \)

Define

\[
\begin{align*}
S_<(w) &= \{x_i : x_i < w\} \\
S_=(w) &= \{x_i : x_i = w\} \\
S_(w) &= \{x_i : x_i > w\}
\end{align*}
\]

Can be computed in linear time

Solve the problem recursively as follows:

\[
\begin{align*}
&\text{If } k \leq |S_<(w)|, \text{ output } \text{Sel}(S_<(w), k) \\
&\text{Else if } k \leq |S_<(w)| + |S_=(w)|, \text{ output } w \\
&\text{Else output } \text{Sel}(S_>(w), k - |S_<(w)| - |S_=(w)|)
\end{align*}
\]

Ideally want \(|S_<(w)|, |S_>(w)| \leq n/2 \). In this case ALG runs in \(O(n) + O\left(\frac{n}{2}\right) + O\left(\frac{n}{4}\right) + \cdots + O(1) = O(n). \)
How to choose w?

Suppose we choose w uniformly at random similar to the pivot in quicksort.

Then, $\mathbb{E}[|S_<(w)|] = \mathbb{E}[|S_>(w)|] = n/2$. Algorithm runs in $O(n)$ in expectation.

Can we get $O(n)$ running time deterministically?

- Partition numbers into sets of size 3.
- Sort each set (takes $O(n)$)
- $w = Sel(midpoints, n/6)$
How to lower bound $|S_{<}(w)|$, $|S_{>}(w)|$?

- $|S_{<}(w)| \geq 2 \left(\frac{n}{6} \right) = \frac{n}{3}$
- $|S_{>}(w)| \geq 2 \left(\frac{n}{6} \right) = \frac{n}{3}$.

So, what is the running time?
\[
T(n) = T\left(\frac{n}{3}\right) + T\left(\frac{2n}{3}\right) + O(n) \Rightarrow T(n) = O(n \log n)
\]
Partition into n/5 sets. Sort each set and set \(w = \text{Sel(midpoints, } n/10) \)

- \(|S_(w)| \geq 3 \left(\frac{n}{10} \right) = \frac{3n}{10} \)
- \(|S_(w)| \geq 3 \left(\frac{n}{10} \right) = \frac{3n}{10} \)

\[
T(n) = T \left(\frac{n}{5} \right) + T \left(\frac{7n}{10} \right) + O(n) \Rightarrow T(n) = O(n)
\]
An Improved Idea

Sel(S, k) {
 n ← |S|
 If (n < ??) return ??
 Partition S into n/5 sets of size 5
 Sort each set of size 5 and let M be the set of medians, so |M|=n/5
 Let w=Sel(M,n/10)
 For i=1 to n{
 If x_i < w add x to S_<w)
 If x_i > w add x to S>_w)
 If x_i = w add x to S_±(w)
 }
 If (k ≤ |S_<w)|)
 return Sel(S_<w),k)
 else if (k ≤ |S_<w| + |S_±(w)|)
 return w;
 else
 return Sel(S>_w),k − |S_<w| − |S_±(w)|)
}
D&C Summary

Idea:

“Two halves are better than a whole”
 • if the base algorithm has super-linear complexity.

“If a little's good, then more's better”
 • repeat above, recursively

• Applications: Many.
 • Binary Search, Merge Sort, (Quicksort),
 • Root of a Function
 • Closest points,
 • Integer multiplication
 • Median
 • Matrix Multiplication