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Finding the Closest Pair of Points



A Divide and Conquer Alg
Divide: draw vertical line L with ≈ n/2 points on each side.
Conquer:  find closest pair on each side, recursively.
Combine to find closest pair overall
Return best solutions
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Key Observation
Suppose 𝛿 is the minimum distance of all pairs in left/right of L.

𝛿 = min 12,21 = 12.
Key Observation: suffices to consider points within d of line L.
Almost the one-D problem again: Sort points in 2d-strip by their y 

coordinate. 
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Only check pts within 11 in sorted list!



Almost 1D Problem
Partition each side of L into !

"
× !
"
 squares

Claim: No two points lie in the same !
"
× !
"
 box.

Pf:  Such points would be within

!
"

"
+ !

"

"
= 𝛿 #

"
≈ 0.7𝛿 < 𝛿

Let si have the ith smallest y-coordinate 
among points in the 2𝛿-width-strip.

Claim:  If 𝑖 − 𝑗 > 11, then the distance 
between  si and sj is > 𝛿.
Pf: only 11 boxes within d of y(si). 
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Recap: Finding Closest Pair

So, enough to check distance
Distance of 30 to 19…41.
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At most 11 points
ahead of 30 have 

distance < 𝛿 from it.

Sorted based on y

Point 42 has distance at
least  2𝛿 from point 30.



Closest Pair (2Dim Algorithm)

i

Closest-Pair(p1, …, pn) {
   if(n <= ??) return ??

   Compute separation line L such that half the points
   are on one side and half on the other side.

   d1 = Closest-Pair(left half)
   d2 = Closest-Pair(right half)
   d = min(d1, d2)

   Delete all points further than d from separation line L

   Sort remaining points p[1]…p[m] by y-coordinate.

   for i = 1..m
      for k = 1…11
      if i+k <= m
           d = min(d, distance(p[i], p[i+k]));
    
   return d.
}



Closest Pair Analysis I
Let D(n) be the number of pairwise distance calculations in 
the Closest-Pair Algorithm when run on n ³ 1 points
 

𝐷 𝑛 ≤ $
1	 if	 𝑛 = 1
2𝐷

𝑛
2 + 11	𝑛	 o. w. ⇒ 𝐷 𝑛 = Θ(𝑛log	𝑛)

BUT, that’s only the number of distance calculations
What if we counted running time?

𝑇 𝑛 ≤ $
1	 if	 𝑛 = 1
2𝑇

𝑛
2
+ 𝑂(𝑛 log 𝑛) 	 o. w. ⇒ 𝐷 𝑛 = Θ(𝑛log!	𝑛)



Can we do better? (Analysis II)
Yes!!

Don’t sort by y-coordinates each time.
Sort by x at top level only.
   This is enough to divide into two equal subproblems in O(n)
Each recursive call returns d and  list of all points sorted by y
Sort points by y-coordinate by merging two pre-sorted lists.

𝑇 𝑛 ≤ $
1	 if	 𝑛 = 1
2𝑇

𝑛
2 + 𝑂 𝑛 	 o.w. ⇒ 𝐷 𝑛 = Θ(𝑛	log	𝑛)



Master Theorem
Suppose 𝑇 𝑛 = 𝑎	𝑇 "

# + 𝑐𝑛$  for all 𝑛 > 𝑏. Then,

• If 𝑎 > 𝑏$ then 𝑇 𝑛 = Θ 𝑛%&'!(

• If 𝑎 < 𝑏$ then 𝑇 𝑛 = Θ 𝑛$

• If 𝑎 = 𝑏$ then 𝑇 𝑛 = Θ 𝑛$log	𝑛

Works even if it is "#  instead of "# .

We also need 𝑎 ≥ 1, 𝑏 > 1	, 𝑘 ≥ 0 and 𝑇 𝑛 = 𝑂(1) for 𝑛 ≤ 𝑏.



Master Theorem
Suppose 𝑇 𝑛 = 𝑎	𝑇 "

# + 𝑐𝑛$  for all 𝑛 > 𝑏. Then,

• If 𝑎 > 𝑏$ then 𝑇 𝑛 = Θ 𝑛%&'!(

• If 𝑎 < 𝑏$ then 𝑇 𝑛 = Θ 𝑛$

• If 𝑎 = 𝑏$ then 𝑇 𝑛 = Θ 𝑛$log	𝑛

Example: For mergesort algorithm we have
𝑇 𝑛 = 2𝑇

𝑛
2
+ 𝑂 𝑛 .

So, 𝑘 = 1, 𝑎 = 𝑏$ and 𝑇 𝑛 = Θ(𝑛 log 𝑛) 



Proving Master Theorem

𝑇(𝑛) = 𝑎𝑇(𝑛/𝑏) + 𝑐𝑛𝑘
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A Useful Identity

Theorem: 1 + 𝑥 + 𝑥! +⋯+ 𝑥) = *"#$+,
*+,

Pf: Let 𝑆 = 1 + 𝑥 + 𝑥! +⋯+ 𝑥)

Then, 𝑥𝑆 = 𝑥 + 𝑥! +⋯+ 𝑥)-,

So,  𝑥𝑆 − 𝑆 = 𝑥)-, − 1
i.e., 𝑆 𝑥 − 1 = 𝑥)-, − 1 
Therefore, 

𝑆 =
𝑥)-, − 1
𝑥 − 1



Solve: 𝑇 𝑛 = 𝑎𝑇 !
"
+ 𝑐𝑛#, 𝑎 > 𝑏#
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Solve: 𝑇 𝑛 = 𝑎𝑇 !
"
+ 𝑐𝑛#, 𝑎 = 𝑏#
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Master Theorem
Suppose 𝑇 𝑛 = 𝑎	𝑇 "

# + 𝑐𝑛$  for all 𝑛 > 𝑏. Then,

• If 𝑎 > 𝑏$ then 𝑇 𝑛 = Θ 𝑛%&'!(

• If 𝑎 < 𝑏$ then 𝑇 𝑛 = Θ 𝑛$

• If 𝑎 = 𝑏$ then 𝑇 𝑛 = Θ 𝑛$log	𝑛

Works even if it is "#  instead of "# .

We also need 𝑎 ≥ 1, 𝑏 > 1	, 𝑘 ≥ 0 and 𝑇 𝑛 = 𝑂(1) for 𝑛 ≤ 𝑏.



Integer Multiplication



Integer Arithmetic
Add:  Given two n-bit integers 
a and b, compute a + b.

Multiply: Given two n-bit 
integers a and b, compute a × b.
The “grade school” method:  
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O(n) bit operations.

𝑂(𝑛") bit operations.



How to use Divide and Conquer?
Suppose we want to multiply two 2-digit integers (32,45).
We can do this by multiplying four 1-digit integers
Then, use add/shift to obtain the result:

Same idea works when multiplying n-digit integers: 
• Divide into 4 n/2-digit integers.
• Recursively multiply
• Then merge solutions
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A Divide and Conquer for Integer Mult
Let 𝑥, 𝑦 be two n-bit integers
Write 𝑥 = 2"/!𝑥, + 𝑥0 and 𝑦 = 2"/!𝑦, + 𝑦0
    where 𝑥0, 𝑥,, 𝑦0, 𝑦, are all n/2-bit integers.

Therefore, 
𝑇 𝑛 = 4𝑇

𝑛
2
+ Θ(𝑛)

So, 
𝑇 𝑛 = Θ 𝑛! .

𝑥 = 2-/" ⋅ 𝑥# + 𝑥(
 𝑦 = 2-/" ⋅ 𝑦# + 𝑦(
 𝑥𝑦 = 2-/" ⋅ 𝑥# +𝑥( 2-/" ⋅ 𝑦# + 𝑦(
      = 2- ⋅ 𝑥#𝑦# + 2 ⁄- " ⋅ 𝑥#𝑦( + 𝑥(𝑦# + 𝑥(𝑦(

We only need 3 values
𝑥$𝑦$, 𝑥,𝑦,, 𝑥$𝑦, + 𝑥,𝑦$

Can we find all 3 by only
  3 multiplication?



Key Trick: 4 multiplies at the price of 3

𝑥 = 2-/" ⋅ 𝑥# + 𝑥(
 𝑦 = 2-/" ⋅ 𝑦# + 𝑦(
 𝑥𝑦 = 2-/" ⋅ 𝑥# +𝑥( 2-/" ⋅ 𝑦# + 𝑦(
      = 2- ⋅ 𝑥#𝑦# + 2 ⁄- " ⋅ 𝑥#𝑦( + 𝑥(𝑦# + 𝑥(𝑦(

𝛼 = 𝑥# + 𝑥(
 𝛽 = 𝑦# + 𝑦(
 𝛼𝛽 = 𝑥# + 𝑥( 𝑦# + 𝑦(
      = 𝑥#𝑦# + 𝑥#𝑦( + 𝑥(𝑦# + 𝑥(𝑦(
𝑥#𝑦( + 𝑥(𝑦# = 𝛼𝛽 − 𝑥#𝑦# − 𝑥(𝑦(



Key Trick: 4 multiplies at the price of 3
Theorem [Karatsuba-Ofman, 1962]  Can multiply two n-digit 
integers in O(n1.585…) bit operations.

To multiply two n-bit integers:
Add two n/2 bit integers.
Multiply three n/2-bit integers.
Add, subtract, and shift n/2-bit integers to obtain result.

𝑇 𝑛 = 3𝑇
𝑛
2
+ 𝑂 𝑛 ⇒ 𝑇 𝑛 = 𝑂 𝑛%&'% B = 𝑂(𝑛,.DED…)

𝑥 = 2-/" ⋅ 𝑥# + 𝑥( ⇒ 𝛼 = 𝑥# + 𝑥(
 𝑦 = 2-/" ⋅ 𝑦# + 𝑦( ⇒ 𝛽 = 𝑦# + 𝑦(
 𝑥𝑦 = 2-/" ⋅ 𝑥# +𝑥( 2-/" ⋅ 𝑦# + 𝑦(
      = 2- ⋅ 𝑥#𝑦# + 2 ⁄- " ⋅ 𝑥#𝑦( + 𝑥(𝑦# + 𝑥(𝑦(

A B𝛼𝛽 − 𝐴 − 𝐵



Integer Multiplication (Summary)
• Naïve:  Θ(𝑛2)

• Karatsuba: Θ(𝑛,.DED…)

• Amusing exercise: generalize Karatsuba to do 5 size 
n/3 subproblems 

This gives Θ 𝑛#.%&…  time algorithm

• Best known algorithm runs in Θ(𝑛 log 𝑛) using fast Fourier 
transform 
but mostly unused in practice (unless you need really big numbers - a 

billion digits of p, say)

• Best lower bound 𝑂(𝑛): A fundamental open problem



Median



Selecting k-th smallest
Problem: Given numbers 𝑥,, … , 𝑥" and an integer 1 ≤ 𝑘 ≤ 𝑛 

output the 𝑘-th smallest number
Sel( 𝑥,, … , 𝑥" , 𝑘)

A simple algorithm: Sort the numbers in time O(n log n) then 
return the k-th smallest in the array.

Can we do better?

Yes, in time 𝑂(𝑛) if 𝑘 = 1 or 𝑘 = 2.

Can we do 𝑂 𝑛  for all possible values of k?

Assume all numbers are distinct for simplicity.



An Idea
Choose a number 𝑤 from 𝑥,, … , 𝑥"
Define
• 𝑆G 𝑤 = 𝑥.: 𝑥. < 𝑤
• 𝑆/ 𝑤 = 𝑥.: 𝑥. = 𝑤
• 𝑆H 𝑤 = 𝑥.: 𝑥. > 𝑤

Solve the problem recursively as follows:
• If 𝑘 ≤ |𝑆G(𝑤)|, output 𝑆𝑒𝑙(𝑆G 𝑤 , 𝑘)
• Else if 𝑘 ≤ 𝑆G 𝑤 + 𝑆/ 𝑤 , output w
• Else output 𝑆𝑒𝑙(𝑆H 𝑤 , 𝑘 − |𝑆G 𝑤 | − |𝑆/ 𝑤 |)

Ideally want 𝑆G 𝑤 , |𝑆H(𝑤)| ≤ 𝑛/2. In this case ALG runs in 
𝑂 𝑛 + 𝑂 "

! + 𝑂 "
I +⋯+ 𝑂 1 = 𝑂 𝑛 .

Can be computed in 
linear time



How to choose w?
Suppose we choose w uniformly at random 
     similar to the pivot in quicksort.
Then, 𝔼 𝑆( 𝑤 = 𝔼 𝑆) 𝑤 = 𝑛/2. Algorithm runs in 𝑂(𝑛) in 

expectation.
Can we get 𝑂(𝑛) running time deterministically?
• Partition numbers into sets of size 3.
• Sort each set (takes O(n))
• 𝑤 = 𝑆𝑒𝑙(𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡𝑠, 𝑛/6)
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• 𝑆G 𝑤 ≥ 2 "
J = "

B

• 𝑆H 𝑤 ≥ 2 "
J = "

B .

So, what is the running time?

How to lower bound 𝑆! 𝑤 , |𝑆" 𝑤 |?
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• If 𝑘 ≤ |𝑆((𝑤)|, output 𝑆𝑒𝑙(𝑆( 𝑤 , 𝑘)
• Else if 𝑘 ≤ 𝑆( 𝑤 + 𝑆* 𝑤 , output w
• Else output 𝑆𝑒𝑙(𝑆) 𝑤 , 𝑘 − 𝑆( 𝑤 − 𝑆* 𝑤 )

Where +
,
≤ 𝑆( 𝑤 , 𝑆) 𝑤 ≤ "+

,

𝑇 𝑛 = 𝑇
𝑛
3
+ 𝑇

2𝑛
3

+ 𝑂 𝑛 ⇒ 𝑇 𝑛 = 𝑂(𝑛	log	𝑛)

Asymptotic Running Time?
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O(nlog n) again? 
So, what is the point?



Partition into n/5 sets. Sort each set and set 𝑤 = 𝑆𝑒𝑙(𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡𝑠, 𝑛/10)

• 𝑆G 𝑤 ≥ 3 "
,0 = B"

,0

• 𝑆H 𝑤 ≥ 3 "
,0

= B"
,0

𝑇 𝑛 = 𝑇
𝑛
5
+ 𝑇

7𝑛
10

+ 𝑂 𝑛 ⇒ 𝑇 𝑛 = 𝑂(𝑛)

An Improved Idea
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An Improved Idea
Sel(S, k) {
   𝒏 ← 𝑺
   If (n < ??) return ??
   Partition S into n/5 sets of size 5
   Sort each set of size 5 and let M be the set of medians, so 
|M|=n/5
   Let w=Sel(M,n/10)
   For i=1 to n{
     If 𝒙𝒊 < 𝒘 add x to 𝑺" 𝒘
     If 𝒙𝒊 > 𝒘 add x to 𝑺# 𝒘
     If 𝒙𝒊 = 𝒘 add x to 𝑺$(𝒘)
   }
   If (𝒌 ≤ |𝑺" 𝒘 |)
     return Sel(𝑺" 𝒘 ,𝒌)
   else if (𝒌 ≤ 𝑺" 𝒘 + |𝑺$ 𝒘 |)
     return w;
   else
     return Sel(𝑺# 𝒘 ,𝒌 − 𝑺" 𝒘 − |𝑺$(𝒘)|)
}

We can maintain each
set in an array 



D&C Summary
Idea:

“Two halves are better than a whole”
• if the base algorithm has super-linear complexity.

“If a little's good, then more's better”
• repeat above, recursively

• Applications: Many.  
• Binary Search, Merge Sort, (Quicksort), 
• Root of a Function
• Closest points, 
• Integer multiplication
• Median
• Matrix Multiplication


