CSE 421

Divide and Conquer: Finding Root Closest Pair of Points

Shayan Oveis Gharan

Finding the Closest Pair of Points

A Divide and Conquer Alg

Divide: draw vertical line L with $\approx \mathrm{n} / 2$ points on each side.
Conquer: find closest pair on each side, recursively.
Combine to find closest pair overall
Return best solutions

Key Observation

Suppose δ is the minimum distance of all pairs in left/right of L .

$$
\delta=\min (12,21)=12
$$

Key Observation: suffices to consider points within δ of line L.
Almost the one-D problem again: Sort points in 2δ-strip by their y coordinate.

Almost 1D Problem

Partition each side of L into $\frac{\delta}{2} \times \frac{\delta}{2}$ squares
Claim: No two points lie in the same $\frac{\delta}{2} \times \frac{\delta}{2}$ box.
Pf: Such points would be within

$$
\sqrt{\left(\frac{\delta}{2}\right)^{2}+\left(\frac{\delta}{2}\right)^{2}}=\delta \sqrt{\frac{1}{2}} \approx 0.7 \delta<\delta
$$

Let s_{i} have the $\mathrm{i}^{\text {th }}$ smallest y -coordinate among points in the 2δ-width-strip.

Claim: If $|i-j|>11$, then the distance between s_{i} and s_{j} is $>\delta$.
Pf: only 11 boxes within δ of $y\left(s_{\mathrm{i}}\right)$.

Recap: Finding Closest Pair

So, enough to check distance Distance of 30 to 19... 41.

Closest Pair (2Dim Algorithm)

```
Closest-Pair(p
    if(n <= ??) return ??
    Compute separation line L such that half the points
    are on one side and half on the other side.
    \delta
    \delta
    \delta}=\operatorname{min}(\mp@subsup{\delta}{1}{},\mp@subsup{\delta}{2}{}
    Delete all points further than \delta from separation line L
    Sort remaining points p[1]...p[m] by y-coordinate.
    for i = 1..m
        for k = 1...11
            if i+k <= m
            \delta= min(\delta, distance(p[i], p[i+k]));
    return \delta.
}
```


Closest Pair Analysis I

Let $D(n)$ be the number of pairwise distance calculations in the Closest-Pair Algorithm when run on $n \geq 1$ points

$$
D(n) \leq\left\{\begin{array}{lr}
1 & \text { if } n=1 \\
2 D\left(\frac{n}{2}\right)+11 n & \text { o.w. }
\end{array} \Rightarrow D(n)=\Theta(n \log n)\right.
$$

BUT, that's only the number of distance calculations
What if we counted running time?

$$
T(n) \leq\left\{\begin{array}{lr}
1 & \text { if } n=1 \\
2 T\left(\frac{n}{2}\right)+O(n \log n) \quad \text { o.w. }
\end{array} \Rightarrow D(n)=\Theta\left(n \log ^{2} n\right)\right.
$$

Can we do better? (Analysis II)

Yes!!

Don't sort by y-coordinates each time.
Sort by x at top level only.
This is enough to divide into two equal subproblems in $\mathrm{O}(\mathrm{n})$
Each recursive call returns δ and list of all points sorted by y
Sort points by y-coordinate by merging two pre-sorted lists.

$$
T(n) \leq\left\{\begin{array}{lc}
1 & \text { if } n=1 \\
2 T\left(\frac{n}{2}\right)+O(n) & \text { o.w. }
\end{array} \Rightarrow D(n)=\Theta(n \log n)\right.
$$

Master Theorem

Suppose $T(n)=a T\left(\frac{n}{b}\right)+c n^{k}$ for all $n>b$. Then,

- If $a>b^{k}$ then $T(n)=\Theta\left(n^{\log _{b} a}\right)$
- If $a<b^{k}$ then $T(n)=\Theta\left(n^{k}\right)$
- If $a=b^{k}$ then $T(n)=\Theta\left(n^{k} \log n\right)$

Works even if it is $\left\lceil\frac{n}{b}\right\rceil$ instead of $\frac{n}{b}$.
We also need $a \geq 1, b>1, k \geq 0$ and $T(n)=O(1)$ for $n \leq b$.

Master Theorem

Suppose $T(n)=a T\left(\frac{n}{b}\right)+c n^{k}$ for all $n>b$. Then,

- If $a>b^{k}$ then $T(n)=\Theta\left(n^{\log _{b} a}\right)$
- If $a<b^{k}$ then $T(n)=\Theta\left(n^{k}\right)$
- If $a=b^{k}$ then $T(n)=\Theta\left(n^{k} \log n\right)$

Example: For mergesort algorithm we have

$$
T(n)=2 T\left(\frac{n}{2}\right)+O(n)
$$

So, $k=1, a=b^{k}$ and $T(n)=\Theta(n \log n)$

Proving Master Theorem

Problem size $T(n)=a T(n / b)+c n^{k}$ n
n / b
b

1
\# probs cost $\begin{array}{cc}1 & c n^{k} \\ \text { a } & c \cdot a \cdot n^{k} / b^{k}\end{array}$

$$
\begin{gathered}
c \cdot \mathrm{a}^{2} \cdot \mathrm{n}^{\mathrm{k}} / \mathrm{b}^{2 \mathrm{k}} \\
=\mathrm{c} \cdot \mathrm{n}^{\mathrm{k}}\left(\mathrm{a} / \mathrm{b}^{\mathrm{k}}\right)^{2}
\end{gathered}
$$

$c \cdot n^{k}\left(a / b^{k}\right)^{d}$

$$
T(n)=c n^{k} \sum_{i=0}^{d=\log _{b} n}\left(\frac{a}{b^{k}}\right)^{i}
$$

A Useful Identity

Theorem: $1+x+x^{2}+\cdots+x^{d}=\frac{x^{d+1}-1}{x-1}$

Pf: Let $S=1+x+x^{2}+\cdots+x^{d}$

Then, $x S=x+x^{2}+\cdots+x^{d+1}$

So, $x S-S=x^{d+1}-1$
i.e., $S(x-1)=x^{d+1}-1$

Therefore,

$$
S=\frac{x^{d+1}-1}{x-1}
$$

Solve: $T(n)=a T\left(\frac{n}{b}\right)+c n^{k}, a>b^{k}$

$$
\begin{aligned}
& T(n)=c n^{k} \sum_{i=0}^{\log _{b} n}\left(\frac{a}{b^{k}}\right)^{i} \\
& \quad=c n^{k} \frac{\left(\frac{a}{b^{k}}\right)^{\log _{b} n+1}-1}{\left(\frac{a}{b^{k}}\right)-1}
\end{aligned}
$$

$$
\begin{aligned}
& b^{k \log _{b} n} \\
& =\left(b^{\log _{b} n}\right)^{k} \\
& =n^{k}
\end{aligned}
$$

$$
\leq c\left(\frac{n^{k}}{b^{k \log _{b} n}}\right) \frac{\left(\frac{a}{b^{k}}\right)}{\left(\frac{a}{b^{k}}\right)-1} a^{\log _{b} n}
$$

Solve: $T(n)=a T\left(\frac{n}{b}\right)+c n^{k}, a=b^{k}$

$$
\begin{aligned}
T(n) & =c n^{k} \sum_{i=0}^{\log _{b} n}\left(\frac{a}{b^{k}}\right)^{i} \\
& =c n^{k} \log _{b} n
\end{aligned}
$$

Master Theorem

Suppose $T(n)=a T\left(\frac{n}{b}\right)+c n^{k}$ for all $n>b$. Then,

- If $a>b^{k}$ then $T(n)=\Theta\left(n^{\log _{b} a}\right)$
- If $a<b^{k}$ then $T(n)=\Theta\left(n^{k}\right)$
- If $a=b^{k}$ then $T(n)=\Theta\left(n^{k} \log n\right)$

Works even if it is $\left\lceil\frac{n}{b}\right\rceil$ instead of $\frac{n}{b}$.
We also need $a \geq 1, b>1, k \geq 0$ and $T(n)=O(1)$ for $n \leq b$.

Integer Multiplication

Integer Arithmetic

Add: Given two n-bit integers
a and b, compute $a+b . \quad$ Add

1	1	1	1	1	1	0	1	
	1	1	0	1	0	1	0	1
+	0	1	1	1	1	1	0	1
1	0	1	0	1	0	0	1	0

$\mathrm{O}(\mathrm{n})$ bit operations.

Multiply: Given two n-bit
integers a and b, compute $a \times b$. The "grade school" method:
$O\left(n^{2}\right)$ bit operations.

How to use Divide and Conquer?

Suppose we want to multiply two 2-digit integers $(32,45)$.
We can do this by multiplying four 1 -digit integers
Then, use add/shift to obtain the result:

$$
\begin{aligned}
x & =10 x_{1}+x_{0} \\
y & =10 y_{1}+y_{0} \\
x y & =\left(10 x_{1}+x_{0}\right)\left(10 y_{1}+y_{0}\right) \\
& =100 x_{1} y_{1}+10\left(x_{1} y_{0}+x_{0} y_{1}\right)+x_{0} y_{0}
\end{aligned}
$$

Same idea works when multiplying n-digit integers:

- Divide into $4 \mathrm{n} / 2$-digit integers.
- Recursively multiply
- Then merge solutions

A Divide and Conquer for Integer Mult

Let x, y be two n -bit integers
Write $x=2^{n / 2} x_{1}+x_{0}$ and $y=2^{n / 2} y_{1}+y_{0}$
where $x_{0}, x_{1}, y_{0}, y_{1}$ are all $\mathrm{n} / 2$-bit integers.

$$
\begin{aligned}
& x=2^{n / 2} \cdot x_{1}+x_{0} \\
& y=2^{n / 2} \cdot y_{1}+y_{0} \\
& x y=\left(2^{n / 2} \cdot x_{1}+x_{0}\right)\left(2^{n / 2} \cdot y_{1}+y_{0}\right) \\
& \quad=2^{n} \cdot x_{1} y_{1}+2^{n / 2} \cdot\left(x_{1} y_{0}+x_{0} y_{1}\right)+x_{0} y_{0}
\end{aligned}
$$

Therefore,

$$
T(n)=4 T\left(\frac{n}{2}\right)+\Theta(n)
$$

We only need 3 values
$x_{1} y_{1}, x_{0} y_{0}, x_{1} y_{0}+x_{0} y_{1}$
Can we find all 3 by only 3 multiplication?

So,

$$
T(n)=\Theta\left(n^{2}\right) .
$$

Key Trick: 4 multiplies at the price of 3

$$
\begin{aligned}
& x=2^{n / 2} \cdot x_{1}+x_{0} \\
& y=2^{n / 2} \cdot y_{1}+y_{0} \\
& x y=\left(2^{n / 2} \cdot x_{1}+x_{0}\right)\left(2^{n / 2} \cdot y_{1}+y_{0}\right) \\
& \\
& \quad=2^{n} \cdot x_{1} y_{1}+2^{n / 2}\left(\left(x_{1} y_{0}+x_{0} y_{1}\right)+x_{0} y_{0}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \alpha=x_{1}+x_{0} \\
& \beta=y_{1}+y_{0} \\
& \alpha \beta=\left(x_{1}+x_{0}\right)\left(y_{1}+y_{0}\right) \\
& \quad=x_{1} y_{1}+\left(x_{1} y_{0}+x_{0} y_{1}\right)+x_{0} y_{0} \\
& \left(x_{1} y_{0}+x_{0} y_{1}\right)=\alpha \beta-x_{1} y_{1}-x_{0} y_{0}
\end{aligned}
$$

Key Trick: 4 multiplies at the price of 3

Theorem [Karatsuba-Ofman, 1962] Can multiply two n-digit integers in $\mathrm{O}\left(\mathrm{n}^{1.585 \ldots}\right)$ bit operations.

$$
\begin{aligned}
x & =2^{n / 2} \cdot x_{1}+x_{0} \Rightarrow \alpha=x_{1}+x_{0} \\
y & =2^{n / 2} \cdot y_{1}+y_{0} \Rightarrow \beta=y_{1}+y_{0} \\
x y & =\left(2^{n / 2} \cdot x_{1}+x_{0}\right)\left(2^{n / 2} \cdot y_{1}+y_{0}\right) \\
& =2^{n} \cdot x_{1} y_{1}+2^{n / 2} \cdot\left(x_{1} y_{0}+x_{0} y_{1}\right)+x_{0} y_{0} \\
\mathrm{~A} & \alpha \beta-A-B
\end{aligned}
$$

To multiply two n-bit integers:
Add two $\mathrm{n} / 2$ bit integers.
Multiply three $\mathrm{n} / 2$-bit integers.
Add, subtract, and shift $\mathrm{n} / 2$-bit integers to obtain result.

$$
T(n)=3 T\left(\frac{n}{2}\right)+O(n) \Rightarrow T(n)=O\left(n^{\log _{2} 3}\right)=O\left(n^{1.585 \ldots}\right)
$$

Integer Multiplication (Summary)

- Naïve: $\Theta\left(n^{2}\right)$
- Karatsuba: $\quad \Theta\left(n^{1.585 . . .}\right)$
- Amusing exercise: generalize Karatsuba to do 5 size $\mathrm{n} / 3$ subproblems
This gives $\Theta\left(n^{1.46 \ldots}\right)$ time algorithm
- Best known algorithm runs in $\Theta(n \log n)$ using fast Fourier transform
but mostly unused in practice (unless you need really big numbers - a billion digits of π, say)
- Best lower bound $O(n)$: A fundamental open problem

Median

Selecting k-th smallest

Problem: Given numbers x_{1}, \ldots, x_{n} and an integer $1 \leq k \leq n$ output the k-th smallest number

$$
\operatorname{Sel}\left(\left\{x_{1}, \ldots, x_{n}\right\}, k\right)
$$

A simple algorithm: Sort the numbers in time $O(n \log n)$ then return the k-th smallest in the array.

Can we do better?

Yes, in time $O(n)$ if $k=1$ or $k=2$.

Can we do $O(n)$ for all possible values of k ?

Assume all numbers are distinct for simplicity.

An Idea

Choose a number w from x_{1}, \ldots, x_{n}
Define

- $S_{<}(w)=\left\{x_{i}: x_{i}<w\right\}$
- $S_{=}(w)=\left\{x_{i}: x_{i}=w\right\}$

Can be computed in linear time

- $S_{>}(w)=\left\{x_{i}: x_{i}>w\right\}$

Solve the problem recursively as follows:

- If $k \leq\left|S_{<}(w)\right|$, output $\operatorname{Sel}\left(S_{<}(w), k\right)$
- Else if $k \leq\left|S_{<}(w)\right|+\left|S_{=}(w)\right|$, output w
- Else output $\operatorname{Sel}\left(S_{>}(w), k-\left|S_{<}(w)\right|-\left|S_{=}(w)\right|\right)$

Ideally want $\left|S_{<}(w)\right|,\left|S_{>}(w)\right| \leq n / 2$. In this case ALG runs in $O(n)+O\left(\frac{n}{2}\right)+O\left(\frac{n}{4}\right)+\cdots+O(1)=O(n)$.

How to choose w?

Suppose we choose w uniformly at random similar to the pivot in quicksort.
Then, $\mathbb{E}\left[\left|S_{<}(w)\right|\right]=\mathbb{E}\left[\left|S_{>}(w)\right|\right]=n / 2$. Algorithm runs in $O(n)$ in expectation.
Can we get $O(n)$ running time deterministically?

- Partition numbers into sets of size 3.
- \quad Sort each set (takes $O(\mathrm{n})$)
- $w=\operatorname{Sel}($ midpoints, $n / 6$)

VI	\bigcirc	\bigcirc	\bigcirc	\bigcirc	VI		VI	\bigcirc	\bigcirc	\bigcirc	VI	\bigcirc	V
\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc						
VI	VI	Vl	VI	VI	VI	VI	VI	Vl	VI	VI	VI	VI	Vl

How to lower bound $\left|S_{<}(w)\right|,\left|S_{>}(w)\right|$?

 $>w$
$<w$

- $\left|S_{<}(w)\right| \geq 2\left(\frac{n}{6}\right)=\frac{n}{3}$
- $\left|S_{>}(w)\right| \geq 2\left(\frac{n}{6}\right)=\frac{n}{3}$.

$$
\frac{n}{3} \leq\left|S_{<}(w)\right|,\left|S_{>}(w)\right| \leq \frac{2 n}{3}
$$

So, what is the running time?

Asymptotic Running Time?

- If $k \leq\left|S_{<}(w)\right|$, output $\operatorname{Sel}\left(S_{<}(w), k\right)$
- Else if $k \leq\left|S_{<}(w)\right|+\left|S_{=}(w)\right|$, output w
- Else output $\operatorname{Sel}\left(S_{>}(w), k-S_{<}(w)-S_{=}(w)\right)$

O(nlog n) again?
So, what is the point?

Where $\frac{n}{3} \leq\left|S_{<}(w)\right|,\left|S_{>}(w)\right| \leq \frac{2 n}{3}$

$$
T(n)=T\left(\frac{n}{3}\right)+T\left(\frac{2 n}{3}\right)+O(n) \Rightarrow T(n)=O(n \log n)
$$

An Improved Idea

Partition into $\mathrm{n} / 5$ sets. Sort each set and set $w=\operatorname{Sel}($ midpoints, $n / 10)$

- $\left|S_{<}(w)\right| \geq 3\left(\frac{n}{10}\right)=\frac{3 n}{10}$
- $\left|S_{>}(w)\right| \geq 3\left(\frac{n}{10}\right)=\frac{3 n}{10}$

$$
\frac{3 n}{10} \leq\left|S_{<}(w)\right|,\left|S_{>}(w)\right| \leq \frac{7 n}{10}
$$

$$
T(n)=T\left(\frac{n}{5}\right)+T\left(\frac{7 n}{10}\right)+O(n) \Rightarrow T(n)=O(n)
$$

An Improved Idea

```
Sel(S, k) {
    n}\leftarrow||
    If (n < ??) return ??
    Partition S into n/5 sets of size 5
    Sort each set of size 5 and let M be the set of medians, so
|M|=n/5
    Let w=Sel(M,n/10)
    For i=1 to n{
        If }\mp@subsup{x}{i}{}<w\mathrm{ add x to }\mp@subsup{S}{<}{}(w
        If }\mp@subsup{x}{i}{}>w\mathrm{ add x to }\mp@subsup{S}{>}{}(w
        If }\mp@subsup{x}{i}{}=w\mathrm{ add x to }\mp@subsup{S}{=}{\prime}(w
    }
    If (k\leq|S<< (w)|)
        return Sel (S
    else if (k\leq | S<< w)|+|S=(w)|)
        return w;
    else
        return Sel (S>}(w),k-|\mp@subsup{S}{<}{}(w)|-|\mp@subsup{S}{=}{\prime}(w)|
}
```


D\&C Summary

Idea:
"Two halves are better than a whole"

- if the base algorithm has super-linear complexity.
"If a little's good, then more's better"
- repeat above, recursively
- Applications: Many.
- Binary Search, Merge Sort, (Quicksort),
- Root of a Function
- Closest points,
- Integer multiplication
- Median
- Matrix Multiplication

