
CSE 421

Divide and Conquer

Shayan Oveis Gharan

1

Divide and Conquer Approach

Divide and Conquer
Similar to algorithm design by induction, we reduce a

problem to several subproblems.
Typically, each sub-problem is
 at most a constant fraction of
 the size of the original problem

Recursively solve each subproblem
Merge the solutions

Examples:
• Mergesort, Binary Search, Strassen’s Algorithm,

Lo
g

n
le

ve
ls

n

n/2n/2

n/4

A Classical Example: Merge Sort

A

sort
recursivelySplit to n/2

merge

Why Balanced Partitioning?
An alternative "divide & conquer" algorithm:
• Split into n-1 and 1
• Sort each sub problem
• Merge them

Runtime
𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑇 1 + 𝑛

Solution:
𝑇 𝑛 = 𝑛 + 𝑇 𝑛 − 1 + 𝑇 1

= 𝑛 + 𝑛 − 1 + 	𝑇 𝑛 − 2

= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑇 𝑛 − 3

= 𝑛 + 𝑛 − 1 + 𝑛 − 2 +⋯+ 1 = 𝑂(𝑛!)

D&C: The Key Idea
Suppose we've already invented Bubble-Sort, and we know
it takes 𝑛!

Try just one level of divide & conquer:

Bubble-Sort(first n/2 elements)

Bubble-Sort(last n/2 elements)

Merge results

Time: 2	𝑇(𝑛/2) 	+ 	𝑛	 = 	𝑛2/2	 + 	𝑛	 ≪ 	𝑛2

Almost twice as fast!

D&C in a
nutshell

D&C approach
• “the more dividing and conquering, the better”

• Two levels of D&C would be almost 4 times faster, 3 levels
almost 8, etc., even though overhead is growing.

• Best is usually full recursion down to a small constant size
(balancing "work" vs "overhead").

In the limit: you’ve just rediscovered mergesort!
• Even unbalanced partitioning is good, but less good

• Bubble-sort improved with a 0.1/0.9 split:
.1𝑛 " 	+ .9𝑛 " 	+ 	𝑛	 = 	 .82𝑛2	 + 	𝑛

The 18% savings compounds significantly if you carry
recursion to more levels, actually giving 𝑂(𝑛 log 𝑛), but
with a bigger constant.

• This is why Quicksort with random splitter is good – badly
unbalanced splits are rare, and not instantly fatal.

Finding the Root of a Function

Finding the Root of a Function
Given a continuous function f and two points a < b such that

𝑓 𝑎 ≤ 0
𝑓 𝑏 ≥ 0

Find an approximate root of f (a point 𝑐 where there is 𝑟 s.t.,
𝑟 − 𝑐 ≤ 𝜖 and 𝑓 𝑟 = 0).

Note 𝑓 has a root in [𝑎, 𝑏] by
 intermediate value theorem

Note that roots of 𝑓 may be irrational,
So, we want to approximate
the root with an arbitrary precision! a b

f 𝑥 = sin 𝑥 − "##
$
+ 𝑥%

A Naiive Approch

Suppose we want 𝜖 approximation to a root.

Divide [a,b] into 𝑛 = "#$
% intervals. For each interval check

𝑓 𝑥 ≤ 0, 𝑓 𝑥 + 𝜖 ≥ 0

This runs in time 𝑂 𝑛 = 𝑂("#$%)

Can we do faster?

a b

D&C Approach (Based on Binary Search)
Bisection(a,b, e)

if 𝑏 − 𝑎 < 	𝝐 then
 return (a)
else
 𝑚 ← (𝑎 + 𝑏)/2
 if 𝑓 𝑚 ≤ 0 then
 return(Bisection(c, b, e))
 else
 return(Bisection(a, c, e))

a bc

Time Analysis
Let 𝑛 = $#"

%
And 𝑐 = (𝑎 + 𝑏)/2
Always half of the intervals lie to
the left and half lie to the right of c

So,

 𝑇 𝑛 = 𝑇 &
! + 𝑂(1)

i.e., 𝑇 𝑛 = 𝑂(log 𝑛) = 𝑂(log $#"%) a bc
n/2n/2

Correctness Proof
P(k) = “For any 𝑎, 𝑏 such that 𝑘𝜖 ≤ 𝑎 − 𝑏 ≤ (𝑘 + 1)𝜖 if 𝑓 𝑎 𝑓 𝑏
≤ 0, then we find an 𝜖 approx to a root using log 𝑘 queries to 𝑓”

Base Case: P(1): Output 𝑎 + 𝜖
IH: Assume P(k).

IS: Show P(2k). Consider an arbitrary 𝑎, 𝑏 s.t.,
2𝑘𝜖 ≤ 𝑎 − 𝑏 < 2𝑘 + 1 𝜖

If 𝑓 𝑎 + 𝑘𝜖 = 0 output 𝑎 + 𝑘𝜖.
If 𝑓 a 𝑓 𝑎 + 𝑘𝜖 < 0, solve for interval 𝑎, 𝑎 + 𝑘𝜖 using log(k)
queries to f.
Otherwise, we must have 𝑓 𝑏 𝑓 𝑎 + 𝑘𝜖 < 0 since 𝑓 𝑎 𝑓 𝑏 < 0
and 𝑓 𝑎 𝑓 𝑎 + 𝑘𝜖 ≥ 0. Solve for interval 𝑎 + 𝑘𝜖, 𝑏.
Overall we use at most log(𝑘) + 1 = log(2𝑘)	queries to f.

Master Theorem
Suppose 𝑇 𝑛 = 𝑎	𝑇 &

" + 𝑐𝑛' for all 𝑛 > 𝑏. Then,

• If 𝑎 > 𝑏' then 𝑇 𝑛 = Θ 𝑛()*!$

• If 𝑎 < 𝑏' then 𝑇 𝑛 = Θ 𝑛'

• If 𝑎 = 𝑏' then 𝑇 𝑛 = Θ 𝑛'log	𝑛

Works even if it is &" instead of &" .

We also need 𝑎 ≥ 1, 𝑏 > 1	, 𝑘 ≥ 0 and 𝑇 𝑛 = 𝑂(1) for 𝑛 ≤ 𝑏.

Master Theorem
Suppose 𝑇 𝑛 = 𝑎	𝑇 &

" + 𝑐𝑛' for all 𝑛 > 𝑏. Then,

• If 𝑎 > 𝑏' then 𝑇 𝑛 = Θ 𝑛()*!$

• If 𝑎 < 𝑏' then 𝑇 𝑛 = Θ 𝑛'

• If 𝑎 = 𝑏' then 𝑇 𝑛 = Θ 𝑛'log	𝑛

Example: For mergesort algorithm we have
𝑇 𝑛 = 2𝑇

𝑛
2
+ 𝑂 𝑛 .

So, 𝑘 = 1, 𝑎 = 𝑏' and 𝑇 𝑛 = Θ(𝑛 log 𝑛)

Finding the Closest Pair of Points

Closest Pair of Points (non geometric)
Given n points and arbitrary distances between them, find
the closest pair. (E.g., think of distance as airfare –
definitely not Euclidean distance!)

Must look at all n choose 2 pairwise distances, else
any one you didn’t check might be the shortest.
i.e., you have to read the whole input

(… and all the rest of the (n) edges…)2

Closest Pair of Points (1-dimension)
Given n points on the real line, find the closest pair,
e.g., given 11, 2, 4, 19, 4.8, 7, 8.2, 16, 11.5, 13, 1
find the closest pair

Fact: Closest pair is adjacent in ordered list
So, first sort, then scan adjacent pairs.
Time O(n log n) to sort, if needed, Plus O(n) to scan
adjacent pairs

Key point: do not need to calc distances between all pairs:
exploit geometry + ordering

1 2 4 4.8 7 8.2 11 11.5 13 16 19

Closest Pair of Points (2-dimensions)
Given n points in the plane, find a pair with smallest
Euclidean distance between them.

Fundamental geometric primitive.
Graphics, computer vision, geographic information systems, molecular

modeling, air traffic control.
Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force: Check all pairs of points p and q with Q(n2)
time.

Assumption: No two points have same x or y coordinates.

A Divide and Conquer Alg
Divide: draw vertical line L with ≈ n/2 points on each side.
Conquer: find closest pair on each side, recursively.
Combine to find closest pair overall
Return best solutions

12

21
8

L

seems like
Q(n2) ?

Key Observation
Suppose 𝛿 is the minimum distance of all pairs in left/right of L.

𝛿 = min 12,21 = 12.
Key Observation: suffices to consider points within d of line L.
Almost the one-D problem again: Sort points in 2d-strip by their y

coordinate.

12

21

L

d=12

7

1

2

3

4
5

6

Only check pts within 11 in sorted list!

Almost 1D Problem
Partition each side of L into &

'
× &
'
 squares

Claim: No two points lie in the same &
'
× &
'
 box.

Pf: Such points would be within

#
"

"
+ #

"

"
= 𝛿 $

"
≈ 0.7𝛿 < 𝛿

Let si have the ith smallest y-coordinate
among points in the 2𝛿-width-strip.

Claim: If 𝑖 − 𝑗 > 11, then the distance
between si and sj is > 𝛿.
Pf: only 11 boxes within d of y(si).

d

29
30

31

28

26

25

d

½d

½d

39

i

j

27

29

>
𝛿

Closest Pair (2Dim Algorithm)

i

Closest-Pair(p1, …, pn) {
 if(n <= ??) return ??

 Compute separation line L such that half the points
 are on one side and half on the other side.

 d1 = Closest-Pair(left half)
 d2 = Closest-Pair(right half)
 d = min(d1, d2)

 Delete all points further than d from separation line L

 Sort remaining points p[1]…p[m] by y-coordinate.

 for i = 1..m
 for k = 1…11
 if i+k <= m
 d = min(d, distance(p[i], p[i+k]));

 return d.
}

Closest Pair Analysis I
Let D(n) be the number of pairwise distance calculations in
the Closest-Pair Algorithm when run on n ³ 1 points

𝐷 𝑛 ≤ I
1	 if	 𝑛 = 1
2𝐷

𝑛
2 + 11	𝑛	 o. w. ⇒ 𝐷 𝑛 = O(𝑛log	𝑛)

BUT, that’s only the number of distance calculations
What if we counted running time?

𝑇 𝑛 ≤ I
1	 if	 𝑛 = 1
2𝑇

𝑛
2
+ 𝑂(𝑛 log 𝑛) 	 o. w. ⇒ 𝐷 𝑛 = O(𝑛log!	𝑛)

Can we do better? (Analysis II)
Yes!!

Don’t sort by y-coordinates each time.
Sort by x at top level only.
 This is enough to divide into two equal subproblems in O(n)
Each recursive call returns d and list of all points sorted by y
Sort points by y-coordinate by merging two pre-sorted lists.

𝑇 𝑛 ≤ I
1	 if	 𝑛 = 1
2𝑇

𝑛
2 + 𝑂 𝑛 	 o.w. ⇒ 𝐷 𝑛 = 𝑂(𝑛	log	𝑛)

