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Divide and Conquer Approach



Divide and Conquer 
Similar to algorithm design by induction, we reduce a 

problem to several subproblems.
Typically, each sub-problem is 
   at most a constant fraction of 
   the size of the original problem

Recursively solve each subproblem
Merge the solutions

Examples:
• Mergesort, Binary Search, Strassen’s Algorithm, 
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A Classical Example: Merge Sort

A

sort 
recursivelySplit to n/2

merge



Why Balanced Partitioning?
An alternative "divide & conquer" algorithm:
• Split into n-1 and 1
• Sort each sub problem
• Merge them

Runtime
𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑇 1 + 𝑛

Solution:
𝑇 𝑛 = 𝑛 + 𝑇 𝑛 − 1 + 𝑇 1

= 𝑛 + 𝑛 − 1 + 	𝑇 𝑛 − 2

= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑇 𝑛 − 3

= 𝑛 + 𝑛 − 1 + 𝑛 − 2 +⋯+ 1 = 𝑂(𝑛!)



D&C: The Key Idea
Suppose we've already invented Bubble-Sort, and we know 
it takes 𝑛!

Try just one level of divide & conquer:

Bubble-Sort(first  n/2 elements) 

Bubble-Sort(last  n/2 elements)

Merge results

Time:  2	𝑇(𝑛/2) 	+ 	𝑛	 = 	𝑛2/2	 + 	𝑛	 ≪ 	𝑛2

Almost twice as fast!

D&C in a 
nutshell



D&C approach
• “the more dividing and conquering, the better”

• Two levels of D&C would be almost 4 times faster, 3 levels 
almost 8, etc., even though overhead is growing. 

• Best is usually full recursion down to a small constant size 
(balancing "work" vs "overhead").

In the limit: you’ve just rediscovered mergesort!
• Even unbalanced partitioning is good, but less good

• Bubble-sort improved with a 0.1/0.9 split:
.1𝑛 " 	+ .9𝑛 " 	+ 	𝑛	 = 	 .82𝑛2	 + 	𝑛

The 18% savings compounds significantly if you carry 
recursion to more levels, actually giving 𝑂(𝑛 log 𝑛), but 
with a bigger constant. 

• This is why Quicksort with random splitter is good – badly 
unbalanced splits are rare, and not instantly fatal.



Finding the Root of a Function



Finding the Root of a Function
Given a continuous function f and two points a < b such that

𝑓 𝑎 ≤ 0
𝑓 𝑏 ≥ 0

Find an approximate root of f (a point 𝑐 where there is 𝑟 s.t.,   
𝑟 − 𝑐 ≤ 𝜖 and 𝑓 𝑟 = 0).

Note 𝑓 has a root in [𝑎, 𝑏] by
   intermediate value theorem

Note that roots of 𝑓 may be irrational, 
So, we want to approximate 
the root with an arbitrary precision! a b

f 𝑥 = sin 𝑥 − "##
$
+ 𝑥%



A Naiive Approch

Suppose we want 𝜖 approximation to a root.

Divide [a,b] into 𝑛 = "#$
%  intervals. For each interval check

𝑓 𝑥 ≤ 0, 𝑓 𝑥 + 𝜖 ≥ 0

This runs in time 𝑂 𝑛 = 𝑂("#$% )

Can we do faster?

a b



D&C Approach (Based on Binary Search)
Bisection(a,b, e)

if 𝑏 − 𝑎 < 	𝝐  then 
  return (a)
else
  𝑚 ← (𝑎 + 𝑏)/2
    if  𝑓 𝑚 ≤ 0 then
     return(Bisection(c, b, e))
    else
       return(Bisection(a, c, e))

a bc



Time Analysis
Let 𝑛 = $#"

%
And 𝑐 = (𝑎 + 𝑏)/2
Always half of the intervals lie to 
the left and half lie to the right of c

So,

   𝑇 𝑛 = 𝑇 &
! + 𝑂(1)

i.e., 𝑇 𝑛 = 𝑂(log 𝑛) = 𝑂(log $#"% ) a bc
n/2n/2



Correctness Proof
P(k) = “For any 𝑎, 𝑏 such that 𝑘𝜖 ≤ 𝑎 − 𝑏 ≤ (𝑘 + 1)𝜖 if 𝑓 𝑎 𝑓 𝑏
≤ 0, then we find an 𝜖 approx to a root using log 𝑘 queries to 𝑓”

Base Case: P(1): Output 𝑎 + 𝜖
IH: Assume P(k).

IS: Show P(2k). Consider an arbitrary 𝑎, 𝑏 s.t., 
2𝑘𝜖 ≤ 𝑎 − 𝑏 < 2𝑘 + 1 𝜖

If 𝑓 𝑎 + 𝑘𝜖 = 0 output 𝑎 + 𝑘𝜖.
If 𝑓 a 𝑓 𝑎 + 𝑘𝜖 < 0, solve for interval 𝑎, 𝑎 + 𝑘𝜖 using log(k) 
queries to f.
Otherwise, we must have 𝑓 𝑏 𝑓 𝑎 + 𝑘𝜖 < 0 since 𝑓 𝑎 𝑓 𝑏 < 0 
and 𝑓 𝑎 𝑓 𝑎 + 𝑘𝜖 ≥ 0. Solve for interval 𝑎 + 𝑘𝜖, 𝑏.
Overall we use at most log(𝑘) + 1 = log(2𝑘)	queries to f.



Master Theorem
Suppose 𝑇 𝑛 = 𝑎	𝑇 &

" + 𝑐𝑛'  for all 𝑛 > 𝑏. Then,

• If 𝑎 > 𝑏' then 𝑇 𝑛 = Θ 𝑛()*!$

• If 𝑎 < 𝑏' then 𝑇 𝑛 = Θ 𝑛'

• If 𝑎 = 𝑏' then 𝑇 𝑛 = Θ 𝑛'log	𝑛

Works even if it is &"  instead of &" .

We also need 𝑎 ≥ 1, 𝑏 > 1	, 𝑘 ≥ 0 and 𝑇 𝑛 = 𝑂(1) for 𝑛 ≤ 𝑏.



Master Theorem
Suppose 𝑇 𝑛 = 𝑎	𝑇 &

" + 𝑐𝑛'  for all 𝑛 > 𝑏. Then,

• If 𝑎 > 𝑏' then 𝑇 𝑛 = Θ 𝑛()*!$

• If 𝑎 < 𝑏' then 𝑇 𝑛 = Θ 𝑛'

• If 𝑎 = 𝑏' then 𝑇 𝑛 = Θ 𝑛'log	𝑛

Example: For mergesort algorithm we have
𝑇 𝑛 = 2𝑇

𝑛
2
+ 𝑂 𝑛 .

So, 𝑘 = 1, 𝑎 = 𝑏' and 𝑇 𝑛 = Θ(𝑛 log 𝑛) 



Finding the Closest Pair of Points



Closest Pair of Points (non geometric)
Given n points and arbitrary distances between them, find 
the closest pair.  (E.g., think of distance as airfare – 
definitely not Euclidean distance!)

Must look at all n choose 2 pairwise distances, else 
any one you didn’t check might be the shortest.  
i.e., you have to read the whole input 

(… and all the rest of the (n) edges…)2



Closest Pair of Points (1-dimension)
Given n points on the real line, find the closest pair,
e.g., given 11, 2, 4, 19, 4.8, 7, 8.2, 16, 11.5, 13, 1 
find the closest pair

Fact: Closest pair is adjacent in ordered list
So, first sort, then scan adjacent pairs.
Time O(n log n) to sort, if needed, Plus O(n) to scan 
adjacent pairs

Key point: do not need to calc distances between all pairs: 
exploit geometry + ordering

1 2 4 4.8 7 8.2 11 11.5 13 16 19



Closest Pair of Points (2-dimensions)
Given n points in the plane, find a pair with smallest 
Euclidean distance between them.

Fundamental geometric primitive.
Graphics, computer vision, geographic information systems, molecular 

modeling, air traffic control.
Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force:  Check all pairs of points p and q with Q(n2) 
time.

Assumption:  No two points have same x or y coordinates.



A Divide and Conquer Alg
Divide: draw vertical line L with ≈ n/2 points on each side.
Conquer:  find closest pair on each side, recursively.
Combine to find closest pair overall
Return best solutions

12

21
8

L

seems like 
Q(n2) ?



Key Observation
Suppose 𝛿 is the minimum distance of all pairs in left/right of L.

𝛿 = min 12,21 = 12.
Key Observation: suffices to consider points within d of line L.
Almost the one-D problem again: Sort points in 2d-strip by their y 

coordinate. 
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Only check pts within 11 in sorted list!



Almost 1D Problem
Partition each side of L into &

'
× &
'
 squares

Claim: No two points lie in the same &
'
× &
'
 box.

Pf:  Such points would be within

#
"

"
+ #

"

"
= 𝛿 $

"
≈ 0.7𝛿 < 𝛿

Let si have the ith smallest y-coordinate 
among points in the 2𝛿-width-strip.

Claim:  If 𝑖 − 𝑗 > 11, then the distance 
between  si and sj is > 𝛿.
Pf: only 11 boxes within d of y(si). 
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Closest Pair (2Dim Algorithm)

i

Closest-Pair(p1, …, pn) {
   if(n <= ??) return ??

   Compute separation line L such that half the points
   are on one side and half on the other side.

   d1 = Closest-Pair(left half)
   d2 = Closest-Pair(right half)
   d = min(d1, d2)

   Delete all points further than d from separation line L

   Sort remaining points p[1]…p[m] by y-coordinate.

   for i = 1..m
      for k = 1…11
      if i+k <= m
           d = min(d, distance(p[i], p[i+k]));
    
   return d.
}



Closest Pair Analysis I
Let D(n) be the number of pairwise distance calculations in 
the Closest-Pair Algorithm when run on n ³ 1 points
 

𝐷 𝑛 ≤ I
1	 if	 𝑛 = 1
2𝐷

𝑛
2 + 11	𝑛	 o. w. ⇒ 𝐷 𝑛 = O(𝑛log	𝑛)

BUT, that’s only the number of distance calculations
What if we counted running time?

𝑇 𝑛 ≤ I
1	 if	 𝑛 = 1
2𝑇

𝑛
2
+ 𝑂(𝑛 log 𝑛) 	 o. w. ⇒ 𝐷 𝑛 = O(𝑛log!	𝑛)



Can we do better? (Analysis II)
Yes!!

Don’t sort by y-coordinates each time.
Sort by x at top level only.
   This is enough to divide into two equal subproblems in O(n)
Each recursive call returns d and  list of all points sorted by y
Sort points by y-coordinate by merging two pre-sorted lists.

𝑇 𝑛 ≤ I
1	 if	 𝑛 = 1
2𝑇

𝑛
2 + 𝑂 𝑛 	 o.w. ⇒ 𝐷 𝑛 = 𝑂(𝑛	log	𝑛)


