CSE 421

Greedy Algorithms

Shayan Oveis Gharan

Minimum Spanning Tree Problem

Minimum Spanning Tree (MST)

Given a connected graph $G=(V, E)$ with real-valued edge weights c_{e}, an MST is a subset of the edges $T \subseteq E$ such that T is a spanning tree whose sum of edge weights is minimized. \rightarrow all rertiens

$$
G=(V, E)
$$

$$
c(T)=\sum_{e \in T} c_{e}=50
$$

Cuts

A graph has $2^{n-1}-1$ may cuts

In a graph $G=(V, E)$ a cut is a bipartition of V into sets $S, V-S$ for some $S \subseteq V$. We show it by $(S, V-S)$

An edge $e=\{u, v\}$ is in the cut $(S, V-S)$ if exactly one of u, v is in S.

Obs: If G is connected then there is at least one edge in every cut.

If G not $\operatorname{con} n \Rightarrow$
于 (S,V)

Cycles and Cuts

Claim. A cycle crosses a cut (from S to V-S) an even number of times.

Pf. (by picture)

Properties of the OPT

Simplifying assumption: All edge costs c_{e} are distinct.
Cut property: Let S be any subset of nodes (called a cut), and let e be the min cost edge with exactly one endpoint in S. Then every MST contains e.

Cycle property. Let C be any cycle, and let f be the max cost edge belonging to C. Then no MST contains f.

red edge is in the MST

Green edge is not in the MST

Cut Property: Proof

Simplifying assumption: All edge costs c_{e} are distinct.
Cut property. Let S be any subset of nodes, and let e be the min cost edge with exactly one endpoint in S . Then T^{*} contains e.
Pf. By contradiction
Suppose $e=\{u, v\}$ does not belong to T^{*}.
Adding e to T^{*} creates a cycle C in T^{*}.
C crosses S even number of times \Rightarrow there exists another edge, say f, that leaves S.
$T=T^{*} \cup\{e\}-\{f\}$ is also a spanning tree.
Since $\mathrm{c}_{\mathrm{e}}<\mathrm{c}_{\mathrm{f}}, \mathrm{c}(T)<\mathrm{c}\left(T^{*}\right)$.
This is a contradiction.

Cycle Property: Proof

Simplifying assumption: All edge costs c_{e} are distinct.
Cycle property: Let C be any cycle in G , and let f be the max cost edge belonging to C . Then the MST T^{*} does not contain f .

Pf. (By contradiction)
Suppose f belongs to T^{*}.
Deleting from T* cuts T^{*} into two connected components.
There exists another edge, say e, that is in the cycle and connects the components.
$T=T^{*} \cup\{e\}-\{f\}$ is also a spanning tree.
Since $\mathrm{c}_{\mathrm{e}}<\mathrm{c}_{\mathrm{f}}, \mathrm{c}(T)<\mathrm{c}\left(T^{*}\right)$.
This is a contradiction.

Kruskal's Algorithm [1956]

```
Kruskal (G, c) {
    Sort edges weights so that coc
    T\leftarrow\emptyset
    foreach (u\inV) make a set containing singleton {u}
    for i = 1 to m
        Let (u,v) = e ei
        if (u and v are in different sets) {
            T}\leftarrowT\cup{\mp@subsup{e}{i}{}
            merge the sets containing u and v
        }
    return T
}
```


Kruskal's Algorithm: Pf of Correctness

Consider edges in ascending order of weight.
Case 1: If adding e to T creates a cycle, discard e according to cycle property.
Case 2: Otherwise, insert e = (u, v) into T according to cut property where $S=$ set of nodes in u's connected component.

Case 1

Case 2

Implementation: Kruskal's Algorithm

 Implementation. Use the union-find data structure.- Build set T of edges in the MST.
- Maintain a set for each connected component.
- $O(m \log n)$ for sorting and $O(m \log n)$ for union-find

```
Kruskal (G, c) {
    Sort edges weights so that c}\mp@subsup{c}{1}{}\leq\mp@subsup{c}{2}{}\leq\ldots\leq\mp@subsup{c}{m}{}
    T}\leftarrow
    foreach (u\inV) make a set containing singleton {u}
    for i = 1 to m
        Let (u,v) = e ei
        if (u and v are in different sets) {
            T}\leftarrowT\cup{\mp@subsup{e}{i}{}
            merge the sets containing u}\mathrm{ and v
        }
    return T
}
```


Union Find Data Structure

Each set is represented as a tree of pointers, where every vertex is labeled with longest path ending at the vertex

To check whether A, Q are in same connected component, follow pointers and check if root is the same.

Union Find Data Structure

Merge: To merge two connected components, make the root with the smaller label point to the root with the bigger label (adjusting labels if necessary). Runs in $\mathrm{O}(1)$ time

Kruskal's Algorithm with Union Find

 Implementation. Use the union-find data structure.- Build set T of edges in the MST.
- Maintain a set for each connected component.
- $O(m \log n)$ for sorting and $O(m \log n)$ for union-find

```
Kruskal (G, c) {
    Sort edges weights so that c}\mp@subsup{c}{1}{}\leq\mp@subsup{c}{2}{}\leq\ldots\leq\mp@subsup{c}{m}{}
    T\leftarrow\emptyset
    foreach (u\inV) make a set containing singleton {u}
    for i = 1 to m Find roots and compare
        Let (u,v) = e ei
        if (u and v are in different sets) {
            T}\leftarrowT\cup{\mp@subsup{e}{i}{}
            merge the sets containing u and v
        }
    return T
                Merge at the roots
}
```


Depth vs Size

Claim: If the label of a root is k, there are at least 2^{k} elements in the set.
Therefore the depth of any tree in algorithm is at most $\log n$

So, we can check if u, v are in the same component in time $O(\log n)$

Depth vs Size: Correctness

Claim: If the label of a root is k, there are at least 2^{k} elements in the set.

Pf: By induction on k.
Base Case ($k=0$): this is true. The set has size 1 .
IH : Suppose the claim is true until some time t
IS: If we merge roots with labels $k_{1}>k_{2}$, the number of vertices only increases while the label stays the same.
If $k_{1}=k_{2}$, the merged tree has label $k_{1}+1$,
and by induction, it has at least

$$
2^{k_{1}}+2^{k_{2}}=2^{k_{1}+1}
$$

elements.

Removing weight Distinction Assumption

Suppose edge weights are not distinct, and Kruskal's algorithm sorts edges so

$$
c_{e_{1}} \leq c_{e_{2}} \leq \cdots \leq c_{e_{m}}
$$

Suppose Kruskal finds tree T of weight $c(T)$, but the optimal solution T^{*} has cost $c\left(T^{*}\right)<c(T)$.

Perturb each of the weights by a very small amount so that

$$
c_{e_{1}}^{\prime}<c_{e_{2}}^{\prime}<\cdots<c_{e_{m}}^{\prime}
$$

where $c_{e_{i}}^{\prime}=c_{e_{i}}+i . \epsilon$
If ϵ is small enough, $c^{\prime}\left(T^{*}\right) \leq c\left(T^{*}\right)+m^{2} \epsilon<c(T)$.
But Kruskal's algorithm returns the same output T. This contradicts the correctness of Kruskal's algorithm, since Kruskal's algorithm is correct if all weights are distinct.

Summary (Greedy Algorithms)

- Greedy Stays Ahead: Interval Scheduling, Dijkstra's algorithm
- Structural: Interval Partitioning
- Exchange Arguments: MST, Kruskal's Algorithm,
- Data Structures: Union Find

