
CSE 421

Greedy Algorithms

Shayan Oveis Gharan

1

Minimum Spanning Tree Problem

Minimum Spanning Tree (MST)

Given a connected graph 𝐺	 = 	 (𝑉, 𝐸) with real-valued edge
weights ce, an MST is a subset of the edges 𝑇 ⊆ 𝐸 such that
𝑇 is a spanning tree whose sum of edge weights is
minimized.

3

5

23

10
21

14

24

16

6

4

18
9

7

11
8

𝐺	 = 	 (𝑉, 𝐸)

5

6

4

9

7

11
8

𝑐 𝑇 =+
!∈#

𝑐! = 50

Cuts

In a graph 𝐺 = (𝑉, 𝐸) a cut is a bipartition of V into sets 𝑆, 𝑉 − 𝑆
for some 𝑆 ⊆ 𝑉. We show it by (𝑆, 𝑉 − 𝑆)

An edge 𝑒 = {𝑢, 𝑣} is in the cut (𝑆, 𝑉 − 𝑆) if exactly one of u,v is in
S.

Obs: If G is connected then there is at least one edge in every
cut. 4

S V-S

u
v

x

Cycles and Cuts
Claim. A cycle crosses a cut (from S to V-S) an even

number of times.

Pf. (by picture)

5

u

S

V - S

C

Properties of the OPT
Simplifying assumption: All edge costs ce are distinct.

Cut property: Let S be any subset of nodes (called a cut), and let
e be the min cost edge with exactly one endpoint in S. Then
every MST contains e.

Cycle property. Let C be any cycle, and let f be the max cost
edge belonging to C. Then no MST contains f.

6

10

S

red edge is in the MST Green edge is not in the MST

5

7

2 3

5

4

7

Cut Property: Proof
Simplifying assumption: All edge costs ce are distinct.
Cut property. Let S be any subset of nodes, and let e be the min
cost edge with exactly one endpoint in S. Then T* contains e.
Pf. By contradiction
Suppose e = {u,v} does not belong to T*.
Adding e to T* creates a cycle C in T*.
C crosses S even number of timesÞ there exists another edge,
say f, that leaves S.

𝑇	 = 	𝑇∗	È	{𝑒} 	−	{𝑓} is also a spanning tree.
Since ce < cf, c(𝑇) 	< 	c(𝑇∗).
This is a contradiction.

7

f

T*
e

S

u v

Cycle Property: Proof
Simplifying assumption: All edge costs ce are distinct.
Cycle property: Let C be any cycle in G, and let f be the max cost
edge belonging to C. Then the MST T* does not contain f.

Pf. (By contradiction)
Suppose f belongs to T*.
Deleting f from T* cuts T* into two connected components.
There exists another edge, say e, that is in the cycle and
connects the components.

𝑇	 = 	𝑇∗	È	{𝑒} 	−	{𝑓} is also a spanning tree.
Since ce < cf, c(𝑇) 	< 	c(𝑇∗).
This is a contradiction.

8

f

T*
e

S

Kruskal’s Algorithm [1956]

Kruskal(G, c) {
 Sort edges weights so that c1 £ c2 £ ... £ cm.
 𝑻 ← ∅

 foreach (𝒖 ∈ 𝑽) make a set containing singleton {𝒖}

 for i = 1 to m
 Let (u,v) = ei
 if (u and v are in different sets) {
 𝑻 ← 	𝑻	È	{𝒆𝒊}
 merge the sets containing 𝒖 and 𝒗
 }
 return 𝑻
}

Kruskal’s Algorithm: Pf of Correctness
Consider edges in ascending order of weight.
Case 1: If adding e to T creates a cycle, discard e according to
cycle property.
Case 2: Otherwise, insert e = (u, v) into T according to cut
property where S = set of nodes in u's connected component.

Case 1

v

u

Case 2

e

e
S

Implementation: Kruskal’s Algorithm
Implementation. Use the union-find data structure.

• Build set 𝑇 of edges in the MST.
• Maintain a set for each connected component.
• O(m log n) for sorting and O(m log n) for union-find

Kruskal(G, c) {
 Sort edges weights so that c1 £ c2 £ ... £ cm.
 𝑻 ← ∅

 foreach (𝒖 ∈ 𝑽) make a set containing singleton {𝒖}

 for i = 1 to m
 Let (u,v) = ei
 if (u and v are in different sets) {
 𝑻 ← 	𝑻	È	{𝒆𝒊}
 merge the sets containing 𝒖 and 𝒗
 }
 return 𝑻
}

Union Find Data Structure
Each set is represented as a tree of pointers, where every vertex
is labeled with longest path ending at the vertex

To check whether A,Q are in same connected component, follow
pointers and check if root is the same.

vv

D,2

vv

A,1
vv

B,0

vv

C,0

vv

W,1

vv

P,0
vv

Q,0

{A,B,C,D} {W,P,Q}

Union Find Data Structure
Merge: To merge two connected components, make the root
with the smaller label point to the root with the bigger label
(adjusting labels if necessary). Runs in O(1) time

vv

D,2

vv

A,1
vv

B,0

vv

C,0

vv

W,1

vv

P,0
vv

Q,0

vv

D,2

vv

A,1 vv

B,0

vv

C,0

vv

W,1

vv

P,0
vv

Q,0

vv

W,1

vv

Q,0

vv

D,1

vv

A,0

vv

W,2

vv

Q,0
vv

D,1

vv

A,0

At most one label
must be adjusted

Kruskal’s Algorithm with Union Find
Implementation. Use the union-find data structure.

• Build set 𝑇 of edges in the MST.
• Maintain a set for each connected component.
• O(m log n) for sorting and O(m log n) for union-find

Kruskal(G, c) {
 Sort edges weights so that c1 £ c2 £ ... £ cm.
 𝑻 ← ∅

 foreach (𝒖 ∈ 𝑽) make a set containing singleton {𝒖}

 for i = 1 to m
 Let (u,v) = ei
 if (u and v are in different sets) {
 𝑻 ← 𝑻	È	{𝒆𝒊}
 merge the sets containing 𝒖 and 𝒗
 }
 return 𝑻
}

Find roots and compare

Merge at the roots

Depth vs Size
Claim: If the label of a root is k, there are at least 2- elements in
the set.
Therefore the depth of any tree in algorithm is at most log n

So, we can check if 𝑢, 𝑣 are in the
same component in time 𝑂(log	𝑛)

vv

D,2

vv

A,1 vv

B,0

vv

C,0

vv

W,1

vv

P,0
vv

Q,0

Depth vs Size: Correctness
Claim: If the label of a root is k, there are at least 2- elements in
the set.

Pf: By induction on k.
Base Case (k = 0): this is true. The set has size 1.
IH: Suppose the claim is true until some time t
IS: If we merge roots with labels	𝑘. > 𝑘/, the number of vertices
only increases while the label stays the same.
If 𝑘. = 𝑘/, the merged tree has label 𝑘. + 1,
and by induction, it has at least

2-! + 2-" = 2-!0.

elements.

Removing weight Distinction Assumption
Suppose edge weights are not distinct, and Kruskal’s algorithm
sorts edges so

𝑐1! ≤ 𝑐1" ≤ ⋯ ≤ 𝑐1#
Suppose Kruskal finds tree 𝑇 of weight 𝑐(𝑇), but the optimal
solution 𝑇∗ has cost 𝑐 𝑇∗ < 𝑐 𝑇 .

Perturb each of the weights by a very small amount so that
𝑐!!
" < 𝑐!"

" < ⋯ < 𝑐!#
"

where 𝑐1$
2 = 𝑐1$ + 𝑖. 𝜖

If 𝜖 is small enough, 𝑐2 𝑇∗ ≤ 𝑐 𝑇∗ +𝑚/𝜖 < 𝑐(𝑇).
But Kruskal’s algorithm returns the same output 𝑇. This
contradicts the correctness of Kruskal’s algorithm, since Kruskal’s
algorithm is correct if all weights are distinct.

Summary (Greedy Algorithms)

• Greedy Stays Ahead: Interval Scheduling, Dijkstra’s
algorithm

• Structural: Interval Partitioning

• Exchange Arguments: MST, Kruskal’s Algorithm,

• Data Structures: Union Find

