CSE 421: Introduction to Algorithms

Stable Matching

Shayan Oveis Gharan

Administrativia Stuffs

Lectures: M/W/F 1:30-2:20 Location: Gates G20

Office hours: M 12:30-1:20 W 2:30-3:20, Allen center 636

Discussion Board: Use edstem https://edstem.org

Practice website: https://usaco.training

CSE 421: Introduction to Algorithms Winter, 2018

Shayan Oveis Gharan

MWF 2:30-3:20 MCH 389 Office hours in CSE 636 M/W/F 3:30-4:20

Textbook:

Algorithm Design by Jon Kleinberg and Eva Tardos, Addison-Wesley, 2006. We will cover almost all of chapters 1-8 of the Kleinberg/Tardos text plus some additional material from later chapters. In addition, 1 recommend reading chapter 5 of Introduction to Algorithms: A Creative Approach, by Udi Manber Addison-Wesley 1989. This book has a unique point of view on algorithm design.

cs.washington.edu/421

Another handy reference is Steven Skiena's Stonybrook Algorithm F

Homework 50% Midterm 15-20% Final Exam 30-35%

Course textbook

Supplementary text ₂

Grading Scheme (Roughly):

TAs

Xiyang Liu	Mon 10:30-11:20 AM	
Marian Dietz	Mon 3:30-4:20 PM	
Raymond Patrick Guo	Mon 4:30-5:30	
Robert Stevens	Tue 11:30-12:20	
<u>Airei Fukuzawa</u>	Tue 12:30-1:20 PM	Gates (CSE II) 150
Aman Thukral	Tue 2:30-3:30	Gates (CSE II) 121
<u>Tom Tian</u>	Tue 3:30-4:30	Gates (CSE II) 150
Dorna Abdolazimi	Tue 4:30-5:30	
Sophie Lin Robertson	Wed 10:30-11:30	
<u>Sela Navot</u>	Wed 11:30-12:30	Gates 131
Albert Weng	Wed 3:30-4:30	Gates 150

Sections

- Sections participation is mandatory.
- HW problems in this course are hard. TAs will solve related problems from previous offering of the curse
- It is a very good opportunity to improve your problem solving skills

Grading

- Weekly HWs, First HW due April 3rd
- Submit to Gradescope
- Midterm (04/29/2024), Final (06/04/2024)
 - Exams are open book, open note, no internet access
 - Midterm 50 minutes, Final 110 minutes.
- HW 50%, Midterm 15-20%, Final 30-35%
- Extra Credit problems can boost your final GPA by 0.1

Daily Quizzes

- One quiz before every lecture
- 1-2 questions about the materials of the previous lecture
- Typically yes/no or multiple choice
- Login to canvas (assignment tab) to access the quiz
- Will release questions in the morning before class, you have around 3-4 minutes to answer

- Daily Quizes can boost up your final GPA by 0.1
- If you don't answer any of them you can still get 4.0!

Structure of the course

- First 2-3 lectures overview of proof techniques
 - Proof by Contradiction
 - Induction
 - Take a look at CSE 311 Lectures/assignments for preparation
- Graph Algorithms
- Greedy Algorithms
- Divid & Conquor

Midterm

- Dynamic Programming,
- Network Flow
- Approximation Algorithms and Linear Programming
- Np Completeness

Final

Stable Matching Problem

Given n companies c_1, \ldots, c_n , and n applicants, a_1, \ldots, a_n find a "stable matching".

- Participants rate members of opposite group.
- Each company lists applicants in order of preference.
- Each applicant lists companies in order of preference.

	favorite	least favorite				favorite	le	least favorite		
	1 ^{s†}	2 nd	3 rd			1 ^{s†}	2 nd	3 rd		
<i>c</i> ₁	a_1	a_2	a_3		<i>a</i> ₁	<i>C</i> ₂	<i>C</i> ₁	<i>C</i> ₃		
<i>C</i> ₂	<i>a</i> ₂	a_1	<i>a</i> ₃		a_2	<i>C</i> ₁	<i>C</i> ₂	<i>C</i> ₃		
<i>C</i> ₃	a_1	a_2	a_3		<i>a</i> ₃	<i>C</i> ₁	<i>C</i> ₂	<i>C</i> ₃		

Stable Matching

Perfect matching:

- Each company gets exactly one applicant.
- Each applicant gets exactly one company.

Stability: no incentive for some pair of participants to undermine assignment by joint action. c In a matching M, an unmatched pair a-c is unstable if a and c prefer each other to current partners.

Stable matching: perfect matching with no unstable pairs.

Stable matching problem: Given the preference lists of n companies and n applicants, find a stable matching if one exists.

а

Example

Question. Is assignment (c_1, a_3) , (c_2, a_2) , (c_3, a_1) stable?

Example

Question. Is assignment (c_1, a_3) , (c_2, a_2) , (c_3, a_1) stable? Answer. No. a_2 , c_1 will hook up.

Example

Question: Is assignment (c_1, a_1) , (c_2, a_2) , (c_3, a_3) stable? Answer: Yes.

Existence of Stable Matchings

Question. Do stable matchings always exist? Answer. Yes, but not obvious a priori.

Stable roommate problem:

2n people; each person ranks others from **1** to **2n-1**. Assign roommate pairs so that no unstable pairs.

So, Stable matchings do not always exist for stable roommate problem.

Propose-And-Reject Algorithm [Gale-Shapley'62]

```
Initialize each side to be free.
while (some company is free and hasn't proposed to every
applicant) {
    Choose such a c
    a = 1<sup>st</sup> woman on C's list to whom C has not yet proposed
    if (a is free)
        assign C and a
    else if (a prefers C to her current C')
        assign C and a, and C' to be free
    else
        a rejects C
}
```

First step: Properties of Algorithm

Observation 1: Companies propose to Applicants in decreasing order of preference.

Observation 2: Each company proposes to each applicant at most once

Observation 3: Once an applicant is matched, she never becomes unmatched; she only "trades up."

What do we need to prove?

- 1) The algorithm ends in a "small" number of steps.
 - How many steps does it take?

- 2) The algorithm is correct [usually the harder part]
 - It outputs a perfect matching
 - The output matching is stable

1) Termination / Runtime

Claim. Algorithm terminates after $\leq n^2$ iterations of while loop. Proof. Observation 2: Each company proposes to each applicant at most once.

Each company makes at most n proposals

So, there are only n^2 possible proposals.

	1 st	2 nd	3rd	4 th	5 th		1 st	2 nd	3rd	4 th	5 th
Vmware	A	В	С	D	E	Amy	W	Х	У	Z	V
Walmart	В	С	D	A	E	Brenda	Х	У	Z	V	W
Xfinity	С	D	A	В	E	Claire	У	Z	V	W	х
Yamaha	D	А	В	С	E	Diane	Z	V	W	х	У
Zoom	A	В	С	D	E	Erika	V	W	Х	У	Z

n(n-1) + 1 proposals required

2) Correctness: Output is Perfect matching

Claim. All Companies and Applicants get matched.

Proof. (by contradiction)

- Suppose, for sake of contradiction, that c_1 is not matched upon termination of algorithm.
- Then some applicant, say a_1 , is not matched upon termination.
- By Observation 3 (only trading up, never becoming unmatched), a_1 was never proposed to.
- But, *c*₁ proposes to everyone, since it ends up unmatched.

2) Correctness: Stability

In either case c, a is stable, a contradiction.

Summary

Stable matching problem: Given n companies and n applicants, and their preferences, find a stable matching if one exists.

- Gale-Shapley algorithm: Guarantees to find a stable matching for any problem instance.
- Q: How to implement GS algorithm efficiently?
- Q: If there are multiple stable matchings, which one does GS find?
- Q: How many stable matchings are there?