
CSE421: Design and Analysis of Algorithms April 3th, 2024

Homework 2

Shayan Oveis Gharan Due: April 10, 2024 at 11:59 PM

P1) Given a tree T (with n ≥ 2 vertices). Suppose we have written 0 or 1 on each vertex of T such
that the sum of all numbers is an even number. Prove that it is possible to choose a subset F
of the edges of T such that every vertex with label 0 is adjacent to an even number of edges
of F and every vertex with label 1 is adjacent to an odd number of edges of F . For example,
given the tree below you can let F be the set of edges colored red.

0 1

0

0 1

1 1

P2) Given a graph G = (V,E), design a polynomial time algorithm to partition edges of G into edge
disjoint cycles and output the cycles. If no such partitioning is possible, output ”Impossible”.
For example, give the graph on the left you may output the two cycles in red and blue and
given the graph on the right you should output ”Impossible”.

P3) You are given a connected undirected graph G with n vertices and m edges where some of the
vertices are ”dead”. That means that you cannot travel over them. Every ”alive” vertex v has
a value, cv ≥ 0. You want to start from an alive vertex of G and travel around (while not going
over any dead vertex) and collect the largest possible value. Note that you can visit a vertex
multiple times (but you get the reward only once). If you travel to v1, v2, . . . , vk your score
will be cv1 + · · ·+ cvk Design an O(m+n)-time algorithm for this task. Your algorithm should
output the largest collectible value. For example in the following graph the dead vertices are
colored in black and the score of every alive vertex is written on it. The largest collectible
value is 5.

2

1

2

3

0

2-1

P4) Given a weighted connected graph G = (V,E) with m = |E| edges and n = |V | vertices
where every edge e ∈ E has a weight we ∈ {1, 2}. Furthermore you are given a pair of
vertices s, t. For a path s = v0, v1, . . . , vk = t from s to a vertex t define its weight to be
w(v0,v1) · w(v1,v2) . . . w(vk−1,vk), i.e., instead of taking the sum of weights we take their product.
Design an O(m+n)-time algorithm to output the length of the smallest weight path from s to
t. You will receive 18 points (out of 20) if your algorithm runs in polynomial time (as opposed
to O(m + n)). For example, in the above picture the length of the shortest path from s to b
is 1 and the length of the shortest paths from s to each of a and c is 2.

s

a

2

b
1

c
2

2

P5) Extra Credit: Prove that we can color the edges of every graph G with two colors (red
and blue) such that, for every vertex v, the number of red edges touching v and the number
of blue edges touching v differ by at most 2.

2-2

