
CSE 421 Section 10

Final Review

Announcements & Reminders

● HW8

○ Was due yesterday, Wednesday 12/4

● Final review with Professor Beame: Sunday, 12/8 @ TBA on Zoom

○ He will go over the practice final, so try it before the session if you can

● The final exam is on Monday, 12/9 @ 2:30-4:45 @ CSE2 G20

○ If you are sick the day of the exam, let us know and we will schedule a makeup

● Course evaluations are due Sunday, 12/8 @ 11:59pm

○ Section evaluations are due Monday, 12/9 @ 11:59pm

Final exam format

● Similar to midterm exam, but longer

○ A sample final is available on Ed

● 135 minutes

● You will be given a standard reference sheet

○ Is expanded from the midterm, attached to sample final on Ed

● You may bring one sheet of double sided 8.5x11” paper containing your own

handwritten notes.

○ Must write name, student number, and UW NetID

○ Must turn in with exam

○ If you want to access your midterm notes sheet, go to Prof. Beame’s OH

Today’s plan

1. (35 min) 6 stations around the room with practice problems

(focused on second half of course, but exam is cumulative)

• Station 1: Short answer

• Station 2: Dynamic programming*

• Station 3: Network flow

• Station 4: Linear programming*

• Station 5: Reduction

• Station 6: Bonus problem

1. (10 min) Go over some of these problems

*the problem at this station was an extra problem on a previous section handout

Problems

1

1

2

2

3

3

4

4

5

5

6

6

Problem 1 – Short answer

In the network flow below, is the depicted flow a maximum flow?

Problem 1 – Short answer

In the network flow below, is the depicted flow a maximum flow?

Not maximum.

Solution

can push 3 more units

8/10 3/3

5/10

3/3

8/10(you were not required to calculate the
new flow, it’s just here for reference)

Problem 1 – Short answer

Recall Interval Scheduling: Given a collection of intervals and an integer 𝑘, determine

if the collection contains at least 𝑘 nonoverlapping intervals.

i. Does Interval Scheduling ≤𝑝 Vertex Cover?

Problem 1 – Short answer

Recall Interval Scheduling: Given a collection of intervals and an integer 𝑘, determine

if the collection contains at least 𝑘 nonoverlapping intervals.

i. Does Interval Scheduling ≤𝑝 Vertex Cover?

Yes. Many possible reasons:

● Vertex Cover is NP-complete, in particular NP-hard, and Interval Scheduling is

clearly in NP (the certificate is the list of 𝑘 nonoverlapping intervals). 𝐴 ≤𝑝 𝐵

whenever 𝐵 is NP-hard and 𝐴 is in NP.

● Interval Scheduling is in P, as we solved it with a greedy algorithm earlier in this

class. 𝐴 ≤𝑝 𝐵 is always true when 𝐴 is in P.

Solution

Problem 1 – Short answer

Recall Interval Scheduling: Given a collection of intervals and an integer 𝑘, determine

if the collection contains at least 𝑘 nonoverlapping intervals.

ii. Does Independent Set ≤𝑝 Interval Scheduling ?

Problem 1 – Short answer

Recall Interval Scheduling: Given a collection of intervals and an integer 𝑘, determine

if the collection contains at least 𝑘 nonoverlapping intervals.

ii. Does Independent Set ≤𝑝 Interval Scheduling ?

Unknown. Because Independent Set is NP-complete and Interval Scheduling is in P,

Independent Set ≤𝑝 Interval Scheduling would imply that an NP-complete problem is

solvable in polynomial time, which is unknown.

Solution

Problem 1 – Short answer

A greedy attempt at Set Cover is:

while there exists an uncovered object do

choose a set that covers the most number of still-uncovered objects

Suppose you are given an instance where every set contains exactly 2 elements. Then

this algorithm returns a set cover that is at most a factor 2 larger than the minimum.

Problem 1 – Short answer

A greedy attempt at Set Cover is:

while there exists an uncovered object do

choose a set that covers the most number of still-uncovered objects

Suppose you are given an instance where every set contains exactly 2 elements. Then

this algorithm returns a set cover that is at most a factor 2 larger than the minimum.

True. If there are 𝑛 objects, the algorithm returns at most 𝑛 sets because every set

chosen contains at least 1 new object. Since every object must be covered, and every

set contains only 2 elements, we require 𝑛/2 sets. Thus the approximation ratio is 2.

Solution

Return to problem select

Return to problem select

Problem 2 – Dynamic programming

Given two strings, 𝑠 = 𝑠1, … , 𝑠𝑚 with length 𝑚 and 𝑡 = 𝑡1, … , 𝑡𝑛 with length 𝑛, find the

length of their longest common subsequence.

Problem 2 – Dynamic programming

Given two strings, 𝑠 = 𝑠1, … , 𝑠𝑚 with length 𝑚 and 𝑡 = 𝑡1, … , 𝑡𝑛 with length 𝑛, find the

length of their longest common subsequence.

Let OPT(𝑖, 𝑗) be the longest common subsequence between 𝑠1, … , 𝑠𝑖 and 𝑡1, … , 𝑡𝑗.

OPT 𝑖, 𝑗 = ൝
1 + OPT(𝑖 − 1, 𝑗 − 1)

max(OPT 𝑖 − 1, 𝑗 , OPT 𝑖, 𝑗 − 1)

if 𝑠𝑖 = 𝑡𝑗
if 𝑠𝑖 ≠ 𝑡𝑗

The base cases are OPT 𝑖, 0 = OPT 0, 𝑗 = 0 for all 𝑖 and 𝑗.

Solution

Return to problem select

Return to problem select

Problem 3 – Network flows

The bank has 𝐶𝑗 of currency 𝑗, and the exchange rate is 𝑅𝑗 of currency 𝑗 for every 1

Franc. Trader 𝑖 has 𝑇𝑖 Francs to convert and is willing to convert between 𝐿𝑖𝑗 and 𝐻𝑖𝑗
of their Francs to currency 𝑗. Determine if the bank can satisfy all requests, and if so,

how to maximize the amount of Francs it collects.

Problem 3 – Network flows

Determine if the bank can satisfy all requests, and if so, how to maximize the amount

of Francs it collects.

First, give all traders their minimum request: check if 𝐶𝑗/𝑅𝑗 ≥ σ𝑖 𝐿𝑖𝑗 for all 𝑗. Then,

𝑠 𝑡

traders currencies bank

𝑇𝑖 − σ𝑗 𝐿𝑖𝑗
𝐻𝑖𝑗 − 𝐿𝑖𝑗 𝐶𝑗/𝑅𝑗 − σ𝑖 𝐿𝑖𝑗

Return to problem select

Return to problem select

Solution

Problem 4 – Linear programming

There are 𝑘 groups and 𝑚𝑖 voters in group 𝑖, of which 𝑎𝑖 are already voting for you. If

you spend $1000 advertising issue 𝑗, then 𝑑𝑖𝑗 more voters in group 𝑖 will vote for you.

Determine the minimum spending so that at least half of each group votes for you.

Problem 4 – Linear programming

There are 𝑘 groups and 𝑚𝑖 voters in group 𝑖, of which 𝑎𝑖 are already voting for you. If

you spend $1000 advertising issue 𝑗, then 𝑑𝑖𝑗 more voters in group 𝑖 will vote for you.

Determine the minimum spending so that at least half of each group votes for you.

Let 𝑥𝑗 be the amount of money, in thousands, spent on issue 𝑗.

𝐦𝐢𝐧𝐢𝐦𝐢𝐳𝐞 𝑥1 +⋯+ 𝑥𝑛

𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨 𝑑𝑖1𝑥1 +⋯+ 𝑑𝑖𝑛𝑥𝑛 + 𝑎𝑖 ≥
𝑚𝑖

2
for all 𝑖

𝑥𝑗 ≥ 0 for all 𝑗

Solution

Problem 4 – Linear programming

There are 𝑘 groups and 𝑚𝑖 voters in group 𝑖, of which 𝑎𝑖 are already voting for you. If

you spend $1000 advertising issue 𝑗, then 𝑑𝑖𝑗 more voters in group 𝑖 will vote for you.

Determine the minimum spending so that at least half of each group votes for you.

Let 𝑥𝑗 be the amount of money, in thousands, spent on issue 𝑗.

𝐦𝐚𝐱𝐢𝐦𝐢𝐳𝐞 − 𝑥1 −⋯− 𝑥𝑛

𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨 − 𝑑𝑖1𝑥1 −⋯− 𝑑𝑖𝑛𝑥𝑛 ≤ 𝑎𝑖 −
𝑚𝑖

2
for all 𝑖

𝑥𝑗 ≥ 0 for all 𝑗

Return to problem select

Return to problem select

Solution

Problem 5 – Reduction

A Hamiltonian path/cycle is a path/cycle that visits every vertex exactly once. Suppose

that HamiltonianPath is NP-hard. Show that HamiltonianCycle is NP-hard.

Problem 5 – Reduction

A Hamiltonian path/cycle is a path/cycle that visits every vertex exactly once. Suppose

that HamiltonianPath is NP-hard. Show that HamiltonianCycle is NP-hard.

We show HamiltonianPath ≤𝑝 HamiltonianCycle. Consider any input for

HamiltonianPath. Create the following graph for HamiltonianCycle:

Solution

Problem 5 – Reduction

A Hamiltonian path/cycle is a path/cycle that visits every vertex exactly once. Suppose

that HamiltonianPath is NP-hard. Show that HamiltonianCycle is NP-hard.

To prove, convert certificate for HamPath to certificate for HamCycle.

Solution

Problem 5 – Reduction

A Hamiltonian path/cycle is a path/cycle that visits every vertex exactly once. Suppose

that HamiltonianPath is NP-hard. Show that HamiltonianCycle is NP-hard.

To prove, convert certificate for HamPath to certificate for HamCycle.

two new blue edges exist by
construction, form the cycle

Solution

Problem 5 – Reduction

A Hamiltonian path/cycle is a path/cycle that visits every vertex exactly once. Suppose

that HamiltonianPath is NP-hard. Show that HamiltonianCycle is NP-hard.

To convert back, consider any Hamiltonian cycle in the graph we created.

Solution

Problem 5 – Reduction

A Hamiltonian path/cycle is a path/cycle that visits every vertex exactly once. Suppose

that HamiltonianPath is NP-hard. Show that HamiltonianCycle is NP-hard.

To convert back, consider any Hamiltonian cycle in the graph we created.

removing these edges gives a
Hamiltonian path

Solution

Return to problem select

Return to problem select

Problem 6 – Bonus problem

In a country with 𝑛 states and 𝑝𝑖 people voting in state 𝑖, the winner of state 𝑖 receives

𝑣𝑖 electoral college votes. In a two-candidate election with no state-level ties,

determine the minimum percent of the total popular vote necessary to win at least

𝑉 = σ𝑖 𝑣𝑖 /2 + 1 electoral votes.

Problem 6 – Bonus problem

In a country with 𝑛 states and 𝑝𝑖 people voting in state 𝑖, the winner of state 𝑖 receives

𝑣𝑖 electoral college votes. In a two-candidate election with no state-level ties,

determine the minimum percent of the total popular vote necessary to win at least

𝑉 = σ𝑖 𝑣𝑖 /2 + 1 electoral votes.

Let OPT(𝑖, 𝑣) be the minimum number of popular votes from states 1,… , 𝑖 in order to

obtain at least 𝑣 electoral votes.

OPT 𝑖, 𝑣 = min(OPT 𝑖 − 1, 𝑣 , OPT 𝑖 − 1, 𝑣 − 𝑣𝑖 + 𝑝𝑖/2 + 1)

Base cases are OPT 𝑖, 𝑣 = 0 for all 𝑖 and all 𝑣 ≤ 0, and OPT 0, 𝑣 = ∞ for all 𝑣 ≥ 1.

Return to problem select

Return to problem select

Solution

	Slide 1: CSE 421 Section 10
	Slide 2: Announcements & Reminders
	Slide 3: Final exam format
	Slide 4: Today’s plan
	Slide 5: Problems
	Slide 6: Problem 1 – Short answer
	Slide 7: Problem 1 – Short answer
	Slide 8: Problem 1 – Short answer
	Slide 9: Problem 1 – Short answer
	Slide 10: Problem 1 – Short answer
	Slide 11: Problem 1 – Short answer
	Slide 12: Problem 1 – Short answer
	Slide 13: Problem 1 – Short answer
	Slide 14: Problem 2 – Dynamic programming
	Slide 15: Problem 2 – Dynamic programming
	Slide 16: Problem 3 – Network flows
	Slide 17: Problem 3 – Network flows
	Slide 18: Problem 4 – Linear programming
	Slide 19: Problem 4 – Linear programming
	Slide 20: Problem 4 – Linear programming
	Slide 21: Problem 5 – Reduction
	Slide 22: Problem 5 – Reduction
	Slide 23: Problem 5 – Reduction
	Slide 24: Problem 5 – Reduction
	Slide 25: Problem 5 – Reduction
	Slide 26: Problem 5 – Reduction
	Slide 27: Problem 6 – Bonus problem
	Slide 28: Problem 6 – Bonus problem

