CSE 421 Section 10

Final Review

Announcements & Reminders

• HW8

- Was due yesterday, Wednesday 12/4
- Final review with Professor Beame: Sunday, 12/8 @ TBA on Zoom
 - He will go over the practice final, so try it before the session if you can
- The final exam is on Monday, 12/9 @ 2:30-4:45 @ CSE2 G20
 - If you are sick the day of the exam, let us know and we will schedule a makeup
- Course evaluations are due Sunday, 12/8 @ 11:59pm
 - Section evaluations are due Monday, 12/9 @ 11:59pm

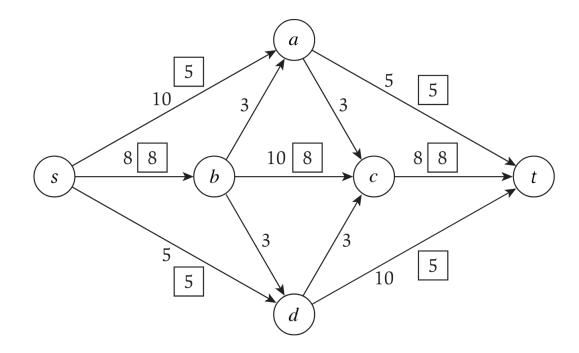
Final exam format

- Similar to midterm exam, but longer
 - A sample final is available on Ed
- 135 minutes
- You will be given a standard reference sheet
 - Is expanded from the midterm, attached to sample final on Ed
- You may bring one sheet of double sided 8.5x11" paper containing your own handwritten notes.
 - Must write name, student number, and UW NetID
 - Must turn in with exam
 - If you want to access your midterm notes sheet, go to Prof. Beame's OH

Today's plan

1. (35 min) 6 stations around the room with practice problems

(focused on second half of course, but exam is cumulative)


- Station 1: Short answer
- Station 2: Dynamic programming*
- Station 3: Network flow
- Station 4: Linear programming*
- Station 5: Reduction
- Station 6: Bonus problem
- 1. (10 min) Go over some of these problems

*the problem at this station was an extra problem on a previous section handout

Problems

In the network flow below, is the depicted flow a maximum flow?

Recall Interval Scheduling: Given a collection of intervals and an integer k, determine if the collection contains at least k nonoverlapping intervals.

i. Does Interval Scheduling \leq_p Vertex Cover?

Recall Interval Scheduling: Given a collection of intervals and an integer k, determine if the collection contains at least k nonoverlapping intervals.

ii. Does Independent Set \leq_p Interval Scheduling?

A greedy attempt at Set Cover is:

while there exists an uncovered object **do** choose a set that covers the most number of still-uncovered objects

Suppose you are given an instance where every set contains exactly 2 elements. Then this algorithm returns a set cover that is at most a factor 2 larger than the minimum.

Problem 2 – Dynamic programming

Given two strings, $s = s_1, ..., s_m$ with length m and $t = t_1, ..., t_n$ with length n, find the length of their longest common subsequence.

Problem 3 – Network flows

The bank has C_j of currency j, and the exchange rate is R_j of currency j for every 1 Franc. Trader i has T_i Francs to convert and is willing to convert between L_{ij} and H_{ij} of their Francs to currency j. Determine if the bank can satisfy all requests, and if so, how to maximize the amount of Francs it collects.

Problem 4 – Linear programming

There are k groups and m_i voters in group i, of which a_i are already voting for you. If you spend \$1000 advertising issue j, then d_{ij} more voters in group i will vote for you. Determine the minimum spending so that at least half of each group votes for you.

Problem 5 – Reduction

A Hamiltonian path/cycle is a path/cycle that visits every vertex exactly once. Suppose that HamiltonianPath is NP-hard. Show that HamiltonianCycle is NP-hard.

Problem 6 – Bonus problem

In a country with *n* states and p_i people voting in state *i*, the winner of state *i* receives v_i electoral college votes. In a two-candidate election with no state-level ties, determine the minimum percent of the total popular vote necessary to win at least $V = \lfloor (\sum_i v_i)/2 \rfloor + 1$ electoral votes.